VOLUME 13 APRIL 2021

CONTENTS

3 ABOUT THE JOURNAL WASHINGTON BIRDS

4 ABOUT THE WASHINGTON ORNITHOLOGICAL SOCIETY

5 PHOTOS AND ILLUSTRATIONS

GENERAL INTEREST

7 SECTION BREAK PHOTO: FERRUGINOUS HAWK
 Mike Roper

8 2020 WASHINGTON COUNTY BY COUNTY Grace Oliver
 HIGHLIGHTS

30 ALTERED AVIAN HABITATS: INVASION OF INVASIVE WEEDS
 ACROSS SOUTHEAST WASHINGTON Mike Denny

37 DECLINE OF WASHINGTON STATE
 SHRUBSTEPPE OBLIGATE BIRDS Scott Downes

47 DIVERSITY, EQUITY, AND INCLUSION............ Jennifer Kaufman
 IN BIRDING IN WASHINGTON STATE and Cinny Burrell
 AND BEYOND

REGULARLY OCCURRING SPECIES: ANALYSIS, UPDATES
 AND EXPANDED KNOWLEDGE:

50 SECTION BREAK PHOTO: SNOWY PLOVER
 Dennis Paulson

51 SWITCHING SWANS: CHANGES Martha Jordan and
 IN SWAN SPECIES COMPOSITION IN Kyle A. Spragens
 NORTHWESTERN WASHINGTON

57 SPRUCE GROUSE AND CLIMATE............... Michael Schroeder
 CHANGE: CANARY IN THE COAL MINE?

70 TEMPERATURE CHARACTERISTICS Larry Schwitters and
 OF A VAUX’S SWIFT CHIMNEY Drew Schwitters
 ROOST IN MONROE, WA

79 GREAT EGRET EATS EARTHWORMS Dennis Paulson and
 Gregg Thompson

81 THE COOPER’S HAWK: HISTORY AND Ed Deal
 CURRENT STATUS IN WASHINGTON

97 THE “WESTERN FLYCATCHER” Jonathan B. Isacoff
 PROBLEM IN EASTERN WASHINGTON:
 LATEST FINDINGS AND SPECTROGRAM ANALYSIS

103 ADIEU TO THE NORTHWESTERN CROW John M. Marzluff
NEW SPECIES ACCOUNTS

110 SECTION BREAK PHOTO: YELLOW-BELLIED FLYCATCHER
 Michael Woodruff
 These species accounts discuss species new to the
 Washington State list since The Birds of Washington State
 (Wahl, Tweit and Mlodinow) came out in 2005.

111 WHOOPER SWAN .. Tom Aversa

115 RUBY-THROATED HUMMINGBIRD Shawneen Finnegan

119 BROAD-BILLED HUMMINGBIRD Matt Bartels

121 THE STATUS OF THREE RARE Dennis Paulson
 SHOREBIRD SPECIES IN WASHINGTON

125 RED-NECKED STINT ... Will Brooks

128 WOOD SANDPIPER ... Ryan Merrill

132 SCRIPPS’S AND GUADALUPE MURRELET Cara Borre

138 ASHY STORM-PETREL .. Scott Mills

142 CRESTED CARACARA .. James Watson

146 YELLOW-BELLIED FLYCATCHER Michael Woodruff

149 LAWRENCE’S GOLDFINCH Brad Waggoner

WASHINGTON BIRD RECORDS COMMITTEE

152 SECTION BREAK PHOTO: SCARLET TANAGER
 Julie Conzelmann

153 ELEVENTH REPORT OF THE Ryan J. Merrill,
 WASHINGTON BIRD RECORDS COMMITTEE
 Charlie Wright
 and Matt Bartels

END PIECE PHOTO: LAZULI BUNTING
 Larry Umthun
WASHINGTON BIRDS

Journal of the Washington Ornithological Society

About Washington Birds
The Washington Ornithological Society (WOS) was chartered in 1988 to increase knowledge of the birds of Washington and to enhance communication among all persons interested in those birds. Washington Birds, from the earliest days 30 years ago, formed a significant part of WOS’ strategy to encourage the spread of knowledge and discussion of scientific data about birds in the state. WOS published Volume 1 in 1989.

Volume 13 has four topic sections and Volume 14 will seek articles of similar types for publication in 2022-23.

General Interest: articles covering general topics concerning birds and birding, especially articles covering habitat analysis and climate change effects.

Regularly Occurring Species: articles updating, analyzing status changes, and/or expanding the knowledge of regularly occurring species in Washington.

New Species for the Washington check list: species accounts for species new to the Washington list since the last Birds of Washington State was published in 2005.

Reports of the Washington Bird Records Committee

Additional Information for Contributors
Potential contributors of articles or photos should contact the editor by email at wabirds@wos.org.

While the journal focuses primarily on the birds of Washington State, papers of general interest, independent of geographic region, will also be considered. Subject matter may include but is not limited to geographic and ecological distribution; seasonal status and migration; breeding biology and general natural history, conservation, identification, faunal lists, site guides, field techniques, and reports on current research.

Editor: Ed Swan
Production: Eva Lee Henderson, Minuteman Press, Seattle
Web Production: Jane Hadley

Acknowledgements
A huge thank you goes to Matt Bartels with the Washington Bird Records Committee (WBRC). Matt assisted in finding potential writers, sources of information on Washington birds, peer review of articles, coordination with Western Birds for permission to print WBRC reports, and on-going advice and support during the editing process.

Dennis Paulson helped with peer review of articles, photos, and much needed and valuable editing advice.

Front Piece Photo: Common Raven pair. Photo by © John Marzluff.
End Piece Photo: Lazuli Bunting. Photo by © Larry Umthun.
WASHINGTON ORNITHOLOGICAL SOCIETY

Founded 1988

“...to increase our knowledge of the birds of Washington and to enhance communication among all persons interested in those birds.”

President Jennifer Kauffman (Seattle)
Vice President David Armstrong (Whidbey)
Treasurer Grace Oliver (Poulsbo)
Secretary Jon Houghton (Edmonds)
Board Member Ed Pullen (Tacoma)
Board Member Jason Fidorra (Pasco)
Board Member Kim Thorburn (Spokane)
Board Member Matt Yawney (Ephrata)
Board Member Bob Flores (Ridgefield)

Membership Information

All persons interested in the birds of Washington are invited to join the Washington Ornithological Society (WOS). Annual dues are $25 for individual membership and $30 for family membership. Renew on-line at http://wos.org/about-wos/membership/. It’s possible to mail membership renewals to the address below. Please visit the membership information on-line for details.

WOS sponsors the Washington Bird Records Committee and publishes the Field Card of Washington Birds. Members receive the journal Washington Birds, the Society’s newsletter WOSNews, and a membership directory.

WOS meets on the first Monday of each month (except July, August and September), at the Center for Urban Horticulture, University of Washington, Seattle. WOS holds an annual conference, alternately east and west of the Cascades, with workshops, speakers, exhibitors, and field trips.

For current information on field trips, programs and the annual conference, visit our website at http://wos.org/. Other important assets on the WOS website include:

1. The online version of A Birder's Guide to Washington (at http://wabirdguide.org/), which provides up-to-date bird finding information and site guides for around Washington State;
2. The Tweeters archive, all the Tweeters birding dialogues back through time formerly hosted by UW;
3. The archive of all past issues of WOSNews.

Washington Ornithological Society
12345 Lake City Way NE, #215
Seattle, WA 98125

Washington Birds
PHOTOGRAPHS AND ILLUSTRATIONS:

Jake Burroughs: Banded Cooper’s Hawk p. 87.
Julie Conzelmann: Scarlet Tanager p. 152.
Ed Deal: Banded Cooper’s Hawk p. 88, Cooper’s Hawk nest p. 90.
Mike Denny: Invasive weeds in Walla Walla Co. p. 30, Yellow-star Thistle p. 33, and Prairie Falcon p. 34.
Scott Downes: sagebrush habitat p. 37, shrubsteppe fire map p. 43, shrubsteppe montage p. 44.
Sierra Downes: Crested Caracara p. 142.
Bob Flores: Ruby-throated Hummingbird p. 115.
John Gatchet: Common Redpoll p.20.
Jon Isacoff: Western Flycatcher p. 97.
Jeremiah Holt: Female Cooper’s Hawk p. 81
Martha Jordan: Swans in Skagit Valley corn field p. 51.
Jack Kizer: Cooper’s hawk in chicken coop p. 82.
Bill Lider: Swifts at chimney entrance p. 70.
G. S. Mills: Ashy Storm-Petrel p. 140, Leach’s Storm-Petrel p. 140.
Jeff Mills: Crested Caracara p. 163.
Guy Monty: Temminck’s Stint p. 123.
Peg Morgan: Banded Cooper’s Hawk p. 85
Martin Muller: Cooper’s Hawk pair p. 84, Cooper’s Hawk with rabbit prey p. 92.
Grace Oliver: Washington Counties map, p.8.

Scott Ramos: Guadalupe Murrelet p. 132.

Dan Reiff: Cooper’s Hawk eating rat p. 91.

Mike Roper: Ferruginous Hawk p. 7.

Matt Schroeder: Broad-billed Hummingbird p. 119.

Ryan Shaw: Gray Wagtail p. 166.

Dave Slager: Map of crow hybridization zone p. 105.

Tony Spane: Barn Owl p.28.

Gregg Thompson: Great Egret eating worms p. 79 and p. 80, Lesser Sand-Plover p. 121.

Larry Umthun: Lazuli Bunting back cover.

U.S. Fish and Wildlife Service: Scripp’s and Guadalupe Murrelets At-Sea Distribution p. 133.

Washington Department of Fish and Wildlife: shrubsteppe maps p. 41.

Sherri L. Williamson: Black-chinned Hummingbird and Ruby-throated Hummingbird composite p. 117.

Michael Woodruff: Yellow-bellied Flycatcher p. 110, p. 146 and p. 147.

Ferruginous Hawk by Highway 24 east of Moxee, Yakima County, 26 March 2013. (Photo by © Mike Roper.)
HIGHLIGHTS OF THE WASHINGTON COUNTY YEAR LIST PROJECT

GRACE OLIVER, P.O. Box 2012, Poulsbo WA 98370; grace.ollie.oliver@gmail.com. WOS member.

Figure 1: Washington State Counties Map (drawn by © Grace Oliver).

COMPILERS FOR WASHINGTON COUNTY YEAR LIST PROJECT:
2007 – ONGOING

Washington birders have a hidden gem of county specific birding area experts. Matt Bartels organizes a top team of county specific birders to keep track of all bird species seen in each of the 39 counties of Washington state. This project has been going since 2007. For anyone that is not aware of the project, here is the link to the web site that contains the contact information for these experts: http://www.wabirder.com/county_yearlist.html

Matt reports the results of this project bi-monthly to Tweeters and keeps an annual spreadsheet of results per year at this web site. There is also a spreadsheet with totals for all years.

I asked these county specific bird experts for some of their insights regarding what makes their county special. The following are their reports.

OVERVIEW OF WA COUNTY YEAR LIST PROJECT - MATT BARTELS

The WA County Year List project started with a pilot run in 2006 and then expanded to cover the entire state in 2007. Since then, the compilers have been the backbone of the project. Most are local, and all know their counties well. Though county compilers are not a local “Bird Records Committee”, they still are welcome to include or exclude sightings based on
their own judgement. Local knowledge of the little quirks and expectations of status and distribution is something that strengthens the results. Even in this age where eBird dominates the data collection, sometimes local knowledge can offer a corrective that is not possible at eBird’s scale. I look forward to learning more from the local experts as we continue into the future. If the only point of this project were compiling data, eBird would be superior. But a key component of a small project like this is bringing together the local birding community in a way not possible with big data or individual lists. It is fun and rewarding to work together to see what is being found around Washington.

Brad Waggoner – Kitsap County

Since I am not able to visit my most favorite birding place in Kitsap County at this time of Stay Home and Stay Safe, I can’t help but highlight Point No Point when it comes to birding in Kitsap County. Yes, there are some interesting bird species that visit or reside in Kitsap, but none of them are ones that can’t be found with some regularity in our great State of Washington in other counties. For most birders, “the Point” is known for a pretty darn good fall show of water birds and such, including an impressive display of jaegers, phalaropes, gulls, and alcids. However, for me, I am fortunate to be aware of one of the best unknowns about this incredibly special place in our home county! Point No Point during certain weather conditions and morning times from mid-April until late May, is likely the best place in our State to witness active spring flight migration. I know a good many birders have come across an excellent Spring movement of Yellow-rumped Warblers moving through trees in their local haunts, but to witness hundreds even thousands in a northbound flight migration in a morning moving over the lighthouse at “the Point” is an incredible spectacle to behold. And, then there are the interesting surprises that move as well among these expected northbound migrants. Birders have not experienced all that Point No Point has to offer until they have spent a good portion of a Spring morning standing near the lighthouse witnessing migration in action!

Russ Koppendrayer – Cowlitz County

While Cowlitz County shares a few species, such as Black Phoebe, with our neighboring counties that are fairly common here and tough elsewhere in WA, I am going to mention a migration phenomenon as the most unique. For whatever reason, the ridge line just east of I-5 going south between Kalama and Woodland is a favorite route for Turkey Vultures in fall migration. I have known about this for years and have seen over 200 in a half hour or less. In the last few years Jim Danzenbaker has taken it upon himself to do a vulture watch from a spot at the north end of Woodland Bottoms on several late September dates. He has recorded over 700 Turkey Vultures in a few hours on occasion. Mixed in are a much smaller number of other raptors, including Broad-winged Hawk on two occasions.

Keith Carlson – Asotin County

Two bird species come to mind for Asotin County.

Lesser Black-backed Gull is dependable from November to February at the Asotin County Regional Landfill. In 2020 we had three individuals.

Less dependable and harder to find on an everyday basis is Gyrfalcon.
eBird hides these sightings as a “sensitive species,” so interested people should probably get in touch with me. We have had at least one every year recently.

Matt Bartels – King County

King county, home of so much of the state’s population, benefits most from having so many eyes out there birding all the time. In recent years, a change we have seen is better coverage of the Puget Sound. Between Ryan Merrill at Carkeek Park to a group who birds from Discovery Park regularly, there is much more consistent birding of the pelagic birds that get blown into the Sound. We are learning that things like puffins and tubenoses are making their way into our county on occasion, especially after storms. It has been great to fill in this missing bit of King County’s birdscape.

Alan Richards and Russ Koppendrayer – Pacific County

In recent years there’s been some restructuring of the coastline in northern Pacific County with the North Cove area eroding away and the beaches north of there building up. These newly built-up beaches have proved to be good nesting habitat for a couple of species that have been in decline. Both Snowy Plover and the streaked subspecies of Horned Lark have been doing well in this area with beaches closed for their welfare during the nesting season.

Becky Kent – Wahkiakum County

Wahkiakum County is a small county in the Southwest part of the state along the Columbia River. It is nestled between the Pacific Ocean and I-5. We have a couple of Eastern Washington birds that nest in and across the river from Wahkiakum County, Horned Larks and American White Pelicans. Horned Larks breed on White’s Island, east of Puget Island, which is only accessible by boat or kayak. If you don’t own your own kayak, there are kayak trips that can be taken from Columbia River Kayaking. American White Pelicans can be found along the Columbia River near Altoona near the Pacific County line during breeding season.
Richard Baltierra – Whitman County

Gray-crowned Rosy-Finch is a harder to find species in the state, and Steptoe Butte State Park is undoubtedly one of the most consistent spots to see them.

Jon Isacoff – Lincoln County

Special bird species of Lincoln County are the Tricolored Blackbird, which presumably breeds annually at Sprague Lake, and the White-faced Ibis, which likely have bred at Sprague Lake one or two of the past several years.
Wilson Cady – Clark County
Clark County is the southernmost county in Washington with the Ridgefield NWR and the Vancouver Lake lowlands hosting thousands of waterfowl and cranes in the winter. The Steigerwald Lake NWR at the mouth of the Columbia River Gorge is a regular spot to find wandering birds that have used that sea level passage through the Cascade Mountains. The county has nesting Redhead, Slender-billed White-breasted Nuthatch and Yellow-headed Blackbirds.

Wilson Cady – Skamania County
Skamania County ranges from Mt. Saint Helens south to the Columbia River Gorge with most of the land being National Forest. The crest of the Cascade Mountains runs down the center of the county but by following Highway 14 along the Columbia River you can go from western to eastern Washington with only a gain of a couple hundred feet. This lack of barriers to the movement of birds allows them to freely inhabit any suitable habitat on either end of the county. An example is the nesting Canyon Wrens on Beacon Rock where the annual rainfall is about ninety inches.

Figure 5: Burrowing Owl in Franklin County. (Photo by © Ollie Oliver.)

Jason Fidorra – Franklin County
Franklin Co is one of the least birded counties in Washington based on eBird submissions. Yet it has a lot to offer for birders locally and statewide, and lots of surprises. Only recently was a Tricolored Blackbird colony near Kahlotus found which has had reliable sightings the past few years. Lyons Ferry and Palouse Falls State Parks are beautiful birding sites and green oases in the scablands which are well known migrant and vagrant traps. Ferruginous Hawks nest here, a state listed species in decline, and it has a stronghold in the NE part of the county, best seen soaring late morning.
around Palouse Falls State Park and Hwy 261. Burrowing Owls nest at artificial burrow sites near Pasco. Where Franklin County is bordered by the Snake and Columbia Rivers there are lots of water birds for birders, plus the rivers act as migration corridors for many species.

Figure 6: Ferruginous Hawk nest. (Photo by © Ollie Oliver.)

Monika Wieland – San Juan County
From ducks and mergansers to loons and grebes, San Juan County is a hot spot for marine birds, but one of the highlight species for many birders is the Long-tailed Duck. Formerly known as the Oldsquaw but renamed in 2000. Both male and female Long-tailed Ducks have striking plumage, even in the winter. San Juan County is one of the most reliable places in Washington (and indeed, on the west coast of the lower 48) to see these Arctic breeders, primarily from November-April. Despite a population that is in steep decline, dozens of Long-tailed Ducks can still be reliably seen in the waters around San Juan County, particularly in areas like Mosquito Pass, Griffin Bay, Boundary Pass, and southern Haro Strait, where they dive up to 200 feet deep to feed on aquatic invertebrates. While an undeniably visually stunning bird, their eerie yodeling calls are another unique addition to winter birding in the San Juans, as they echo over the straits in the early mornings. While some visiting birdwatchers come to San Juan County specifically to look for Long-tailed Ducks, it’s also a favorite species among local birders.

Lisa Hill and Larry Umthun – Benton County
Benton County is home to many great birding sites and one of the highlights is W.E. Johnson Park in Richland. It is 225 acres of BLM and COE property, designated a natural area and minimally managed under the Richland Parks Department. Trails throughout the park meander through deciduous groves, sagebrush, open grassy areas, and along marsh and Yakima
River shoreline. Over 150 bird species have been documented in the park, including scores of Yellow-breasted Chats. No other site in Washington has documented such a huge number of breeding Chats. Between 65-85 singing males can be counted during the dawn chorus in the height of breeding season. This is likely a conservative number since the entire property is not thoroughly canvassed during a survey. Females are mostly silent but are presumably present in equal numbers. Taking into account an average of three fledglings per nesting pair, there could be over 350 Yellow-breasted Chats in W.E. Johnson Park during the month of July.
Skagit County – Ryan Merrill

Spanning from sea level near the east end of the Strait of Juan de Fuca to over 9,000 feet in the North Cascades, Skagit County offers numerous opportunities for great birding throughout the year along with some spectacular scenery.

The county is probably most well-known for the large number of wintering raptors and waterfowl on the Skagit and Samish Flats, however there is much more to the county than that. Spring and fall migration bring shorebirds passing through and congregating around the Skagit River delta on Fir Island with scarcer migrants including Stilt and Sharp-tailed Sandpipers being found most years. Upriver near Rockport and Marblemount a number of species more typical of the interior are expected annually in small numbers, including both Western and Eastern Kingbird, Nashville Warbler, American Redstart and Vesper Sparrow. Higher up American Three-toed Woodpecker and “Olive-backed” Swainson’s Thrush breed and there is a chance of more elusive residents like Spruce Grouse and Boreal Owl. At the far west end of the county at places like Deception Pass and Washington Park one can see a variety of alcids and other seabirds.

Skagit County has consistently ranked among the top five-year lists among the 39 Washington counties and has averaged over 260 species since the Washington Birder County Year List Project began in 2007. Through July 2020 the only Washington records for Spotted Redshank, Wood Sandpiper, Eurasian Kestrel, Dusky Thrush and Eastern Meadowlark have come from Skagit County.

Figure 9: Falcated Duck with Eurasian and American Wigeon, Bay View, Skagit County, WA on 16Jan2017, 5th Washington record found by Rick Klawitter. (Photo by © Ryan Merrill.)

Pend Oreille County – Terry Little

The burn, from the fire on Hall Mt at Sullivan Lake that closed the road to Mt Salmo in 2017, follows a couple of miles up Sullivan Creek, but the other 15 miles are great. I had a really good year up there in 2018. What
you might need to know is that there could still be snow up there, preventing you from getting all the way to the top of Mt Salmo into July. Also, Bunchgrass is very mosquito infested through the end of June.

Spokane County – Tim O’Brien

Having grown up in western Washington, I have a unique perspective on being the Spokane County compiler. What I find most unique in Spokane County is that even over here in the dry area of the State, there is a slice of western WA. When you take a drive or hike up Mount Spokane, you quickly leave the dry Ponderosa Pine zone and enter a lush green forest that has many birds that would be associated with anywhere in western WA. Mount Spokane makes me feel like I am back at home when I find Steller’s Jay, Varied Thrush, Pacific Wren, and many other wet-side type birds.

Thurston County – Bill Shelmerdine

What Make Thurston County a great place to bird?

Well of course the Nisqually Delta is how most people experience birding in the county. And with good reason. It’s a place not to be missed, with regulars like American Bittern and Northern Shrike (winter), but also for an abundance of waterfowl, shorebirds, and the occasional surprising migrant. Access is good, and for the most part barrier free. It is arguably the best birding location in Thurston County. But wait, there’s more.

Even though the county lacks direct access to the outer coast and higher elevation mountain areas, there is plenty of variety for the birder willing to make the effort. Lowland, westside conifer forests dominate the landscape with the inland marine waters of the Salish Sea/Puget Sound, South Sound Prairies, and Capitol Forest providing variety and adding substantially to the species mix. Try Capitol Forest for the sought after and sometimes hard to find Hermit Warbler. It’s a good place for Northern Pygmy Owl and Canada Jay as well and who knows, you might just stumble across a Mountain Quail.

The Capitol Forest provides a convenient pass through for birders traveling between the outer coast and the Puget Sound Region.
Island County – Ann Marie Wood and Steve Giles

I would highlight three spots on Whidbey that stand out.

First would be the winter spectacle at West Beach in Deception Pass St Park of hundreds of Red-throated Loons flying in from the Strait and fishing the tide changes. The numbers are in the hundreds and the birds can be observed closely as they fly by and then ride the fast-moving tides.

Second for me is Deer Lagoon. It is a combination of a large freshwater lagoon fronted by saltwater Puget Sound that is rare now-and is very accessible-and provides habitat for a large variety of species year-round. In recent years, the summertime gathering of White Pelicans has been a nice spectacle.

Third and for me the best location is Crockett Lake. I say best because of its favorable habitat for shorebirds. In winter, the lake edges fill up, but one can still find Dunlin and Black-bellied Plovers in the surrounding fields most days. Late spring brings Northbound migration. Not usually a time for rarities but a nice variety of birds pass through. Late June and July begin Southbound migration and the numbers and variety on shorebirds increase. There was an adult Red-necked Stint that spent several days there several years ago. Fall continues the numbers of common shorebirds coming through and increases the chance of finding an unusual bird - last year’s Hudsonian Godwit as an example.

My personal favorite birding spots on Camano are these three:

I think Iverson is the best place to see a variety of species at any time of year. Port Susan Bay has many waterfowl from fall through spring and shorebirds in migration. The fields to the West before the parking lot have two seasonal ponds which host many species. The elevated trail winds through an extensive brushy area with a freshwater marsh adding to the diversity of habitats.
GRACE OLIVER

My next favorite area is Maple Grove boat launch and the rocky beach west of it. This is a great spot for sea watching as it looks out on the deep waters of Saratoga Passage. Winter is best for diversity, but late summer/early fall migration are productive also. In the last few years, I think this has been the best spot in the County for Parasitic Jaegers. A scope greatly increases the numbers of birds one can identify but it is not essential. In April this is a good spot to find Gray Whales.

My third recommendation would be Cama Beach and Camano Island State Parks. Here you also have access to salt water and rocky beaches. Each of these parks also has forested uplands with extensive trail systems. These host all the common migrant and nesting species expected in West Washington coniferous forests.

Stevens County – Mike Munts

Stevens county has several excellent birding locations. The Colville Sewage Lagoons are one of the best shorebird hotspots in Eastern Washington. To help facilitate birders, the Colville Sewage Treatment Ponds (STP) is now open M-F from 7am to 3pm. The gate will remain unlocked during that time. This way birders will know when it is open. It is a new thing the STP is doing to accommodate birders. Hurray for excellent relationships between Washington birders and local communities!

Little Pend Oreille National Wildlife Refuge has excellent birding for many forest birds especially woodpeckers and a reliable spot for Flammulated Owls. Check out their website (www.fws.gov/refuge/Little_Pend_Oreille) or visit the refuge office for more information. The west side of the county is defined by Lake Roosevelt which has a great variety of waterfowl throughout much of the year. The south end of the county is the Spokane River and Long Lake. The eastern portion of the county is high country of the Selkirk Mountains. In between the Colville River Flats south of Chewelah is excellent all-around birding especially in spring migration. From the high country around Chewelah Peak and 49 Degrees North Ski to the Colville and Columbia Rivers and from Long Lake to the Canadian Border, Stevens County has a lot to offer birders.

Ferry County – Donna Bragg

An interesting place to bird in Ferry county is the Swawilla Basin. On Swawilla Basin Rd, just up the hill from SR21 there are pines and a riparian area that host breeding Lewis’s Woodpeckers, chat, and the occasional Gray Flycatcher. Lower down, into the basin itself, there are breeding Loggerhead Shrike, Bullock’s Orioles, Meadowlarks, Grasshopper Sparrow, Horned Larks, Gray Partridge and Chukar along with more common birds. Golden Eagle have been seen here on the cliffs as well.

Adams Co – Rick Taylor

At first glance, Adams County appears to be dominated by agricultural fields with little bird diversity. Upon closer inspection, it reveals several excellent birding spots. Near Othello are the Para/McCain ponds. This little wetland complex hosts a great selection of waterfowl and seasonal shorebirds. It also sports a small colony of Tricolored Blackbirds. Also, near Othello, a
portion of the Columbia National Wildlife Area is in Adams County. Royal Lake, which is bisected by the Adams/Grant county line, hosts tens of thousands of ducks during the late winter. Farther to the west is Sprague Lake, which is bisected by the Adams/Lincoln county line. The Adams County end of the lake gets very shallow and turns into a large marsh. An island on the Adams County end of the lake supports nice numbers of nesting gulls. This is the best spot in the county for seeing a diversity of gulls. The lake also hosts nesting grebes – Western, Clark’s, Horned and Eared. Just to the southwest of Sprague Lake is Cow Lake. This is another hotspot for waterfowl, marsh birds and migrating shorebirds. Washtucna, in the southeast corner of the county is a nice migrant trap. It is the only green spot in a desert of harvested wheat fields during the fall migration. It is one of the better spots in the state for migrating warblers and flycatchers. I have spent May mornings examining every tree in Bassett Park for migrants. For leisurely but productive birding, set up a chair under a tree near the small stream that flows through Bassett Park and watch the neo-tropical migrants that come to drink from bushes at the edge of the stream. Birding Adams County always brings surprises and is well worth a weekend birding adventure.

Jefferson County – John Gatchet

I grew up in the Gardiner Beach area and my earliest birding there was in the 50’s and 60’s. It is a very prolific eBird Hotspot in Jefferson County. The saltwater of Discovery Bay is complimented by a lagoon that attracts a wide assortment of ducks, gulls, and shorebirds in season. Woodlands, hay fields, farm ponds and pastures attract a diversity of species to the area. Rare and uncommon birds are expected in this location for 207 species. Emperor Goose, Yellow-billed Loon, Thick-billed Murre, Pomarine and Parasitic Jaeger, Franklin’s Gull, Western Kingbird, Pine Grosbeak, California Scrub-Jay, Common Redpoll, Red-naped Sapsucker, Brewer’s Sparrow and Palm Warbler are some of the species found in the past.
Joe Meche – Whatcom County

The true highlight of birding in Whatcom County comes with the winter migrants which spend time in and around Semiahmoo Bay/Drayton Harbor, one of the original 53 Important Bird Areas in Washington state.

Three species of loons are common throughout the winter with peak numbers in mid-April when >1,000 Pacific Loons feed in the channel on the US-Canada border. This is a reliable spot for Long-tailed Ducks until late April. In addition, all three scoter species, four grebe species, mergansers,
American Wigeons, Northern Pintails, three cormorant species, several gull species, along with shorebirds that include Dunlin, Black Turnstones and during migration, Western and Semipalmated Sandpipers, three Godwit species, Black-bellied Plovers, Willets, etc., etc. Throw in a few Bald Eagles, Peregrine Falcons, and Great Blue Herons and you have quite a brew. I am certain that I have left out a few but the bottom line is, this is a premiere fall/winter/spring birding location!

Douglas County – Joe Veverka
Douglas County is best known for Snowy Owls and Gyrfalcons in Winter but is also a particularly good place to see Sharp-tailed and Sage Grouse. I go over there to bird the potholes/flooded fields but also enjoy the landscape.

Clallam County – Bob Boekelheide
When most birders think of Clallam County, they probably think about rare birds at Neah Bay. From Painted Redstarts to Eurasian Hobbies, it’s always fun to search for the next exciting vagrant bird at the Beginning of the World. But to me, Clallam County is especially lucky because of its diversity of habitats, from snow-capped mountains to pelagic seabirds. There are so many great places to look for birds. I have a particular fondness for Dungeness Bay, but there are many equivalent places along the Clallam coast that deserve more frequent observations. In reality, the actual reason that Clallam County typically leads the state in the number of species seen annually is because of all the exceptional birders that both live here and regularly visit.

Mason County - Joe Buchanan
As the coordinator for Mason County, I think one way to characterize Mason County is that it is small, and perhaps due to its lack of connection to the outer coast and the only marine waters being Hood Canal (which has mostly small estuaries), there is a low number of seabirds and an overall low number of species recorded compared to all other west-side counties. This comparatively low species richness may also reflect a lower level of birder activity to some extent, but I think it is likely driven mostly by the available ecological systems/habitats present in the county. Note this is what makes Mason County such a challenge for Washington County Listers!

Kittitas County – Scott Downes
What is unique for Kittitas is the incredible diversity of habitats, particularly breeding birds. All 15 species of Washington’s owl species have been recorded. 11 species of woodpecker are regular. 11 species of gallinaceous birds have been seen in the county. The Columbia River also provides a wonderful assortment of wintering and migrating water birds.

Pierce County – Bruce LaBar
With 355 recorded bird species, Pierce County has one of the highest counts of all Washington counties. Diverse habitats ranging from the heights of Mt. Rainier National Park to the Puget Sound saltwater, to the prairies of JBLM (Joint Base Lewis-McChord), farmlands in eastern parts of the county and to wonderful parks like Point Defiance and Fort Steilacoom, offer outstanding birding opportunities.
Some of the harder-to-find species that Pierce County offers birders include:
- White-tailed Ptarmigan, Gray-crowned Rosy Finches, Boreal Owl, and other alpine birds found at Mt. Rainier.
- Northern Bobwhite, Vesper Sparrow and the streaked Horned Lark found on JBLM property.
- Mountain Quail, scarce, but breeding in the western parts of the county near Purdy.
- Pelagic species that frequent Puget Sound in the fall and early winter, with annual sightings of Parasitic Jaegers, Common Terns, Sabine’s Gulls and occasionally Cassin’s Auklets and Ancient Murrelets.

Rarities found in recent years include Common and King Eider; Black-tailed, Little, Lesser Black-backed, Black-headed and Slaty-backed Gulls; Northern Wheatear, Brown Booby, Ruff, Snowy Egret, Acorn Woodpecker, White Wagtail, Blue Jay, Black-throated Blue Warbler, Great-tailed Grackle, Harris’s Sparrow, Snow Bunting, Common Redpoll, White-winged Crossbill and Rose-breasted Grosbeak.

With increasingly dedicated Pierce County birders, we have added several new county records. We welcome all to come and help us explore this wonderful county.

Grant County – Doug Schonewald

My feeling is that the primary highlight of Grant County is the addition of the irrigation system that supplies water that would otherwise not be present. This gives migrating water birds (waterfowl, wading birds, and shorebirds) habitat that wouldn’t otherwise be available. The addition of a system of State parks from Grand Coulee to Potholes Reservoir also gives migrating passerine birds places to stop, rest, and refuel for their journey southward. Most of these State parks would not be available without the
irrigation projects. In truth, the Black-crowned Night-Heron rookery would not exist were it not for an irrigation project. The CNWR (Columbia National Wildlife Refuge) would be mostly a dry waste land without the additional water supplied by the irrigation project.

![Figure 16. Black-crowned Night-Heron. (Photo by © Ollie Oliver.)](image)

Klickitat County – Sam Holman

As a birder, I love Klickitat county for its extreme diversity of habitats and ecosystems, which support one of the largest lists of breeding bird species in the state of Washington. The county is rich with a wide variety of areas including Westside-like forests, mountain river gorges, eastside forests of Ponderosa Pine and Garry Oak, savannas and grasslands, basalt cliffs, sagebrush flats interspersed with riparian creeks, and the Columbia River Gorge. All these and you add in jewels like the Conboy and Trout Lake valleys, we have an amazing county to bird and experience.

Grays Harbor County – Dianna Moore

Grays Harbor County is one of those amazing places that attracts a wide range of birds year-round, so the biggest problem I have is covering all the new discoveries in a timely manner. I find most of my information on eBird, but I also have Tweeters, the Westport Seabirds reports, the friends of mine who keep me posted, and my own yard of course. Thanks to all the amazing people who bird our county...often...I have a constant stream of information to add to the collective pot.

Chelan County – Virginia Palumbo

Chelan County is the third largest county in Washington State, and encompasses a wide variety of habitats. To the north are the alpine/subalpine forests and meadows found along the North Cascades Highway, such
as Washington Pass. Here you can find White-tailed Ptarmigan, Spruce Grouse and Gray Jays. This habitat is also found at higher elevations above Leavenworth and Lake Wenatchee to the south. At the opposite extreme are the dry sagebrush steppe habitats found in the eastern portion of the county, such as Horse Lake Preserve. Here you might find Sage Thrasher, Peregrine Falcons, Ash-throated Flycatchers, California Jays, and Peregrine Falcons. Probably the most birdy locations in the county are the contiguous areas of Confluence State Park/Horan Natural Area and Walla Walla Point Park along the Columbia River in Wenatchee. This area has an abundance of shorebirds (Avocet, Dunlin, Dowitchers, Baird’s Sandpipers), waterfowl (Greater White-fronted Geese, Wood Ducks, Red-breasted Merganser, and an occasional Surf Scoter), raptors, riparian songbirds, and seasonal migratory birds. There are numerous and exciting ongoing Community Science projects (except during current COVID-19 restrictions) available through the Chelan-Douglas Land Trust, North Central Washington Audubon, and the Chelan Ridge Hawk Watch, in the autumn.

Yakima County – Denny Granstrand

Yakima County has a wide variety of habitats, ranging from a 6-mile stretch of the Columbia River at Priest Rapids to shrub-steppe desert, dry ponderosa pine forests, wetter forests nearer to the Cascade Range crest and sub-alpine meadows, that birders can be kept busy pursuing their county and year lists for weeks on end.

Lewis County – Dave Hayden

What makes Lewis County special is the variety of habitats that can be birded. We have the farmlands and prairies in the lowlands up to the alpine zones of the Goat Rocks Wilderness. Our county offers great birding with lots
of walking and hiking trails, parks, two large lakes, and more. The Cowlitz River is a main migration route during the fall and spring, which makes the Cowlitz Valley a magnet for rare birds. Our county does not have the dense population as some others, so we are under birded, and the opportunity for finding that rare bird exists every year.

Walla Walla County – MerryLynn & Mike Denny

Walla Walla County is A Birder’s Paradise because of habitat – even though we have lost our shrub-steppe to fire and ag. Many birds are gone because of wind turbines and development – such as Burrowing Owl, Short-eared Owls, Long-billed Curlews, Loggerhead Shrike, etc. BUT we still have the Columbia and Snake Rivers, desert habitat, upland grassland, and the mountains. 352 species have been recorded in Walla Walla County – the most of any county east of the Cascades.

SPRING: Spring is really fun birding as every day brings new year birds in while winter birds are still here. At McNary NWR Refuge HQ you can see thousands of Snow Geese, swans and many waterfowl while also watching Sandhill Cranes and swallows overhead. In the mountains the Fox Sparrows return in early March and sing, both species of bluebirds return and can be found anywhere. The Ferruginous Hawks return to their manmade nest platforms, a few Long-billed Curlews come back south of Touchet and you can hear singing Northern AND Loggerhead Shrikes on the same day. Shorebirds return and can be found along the river – the Wilson’s Snipe start winnowing in mid-March. White-faced Ibis usually show up in the spring – at the river or close by.

SUMMER: A GREAT time to bird the county. In the mountains, the Green-tailed Towhees return to nest along with Great Gray Owls. Western, Hammonds, Dusky Flycatchers and Western Wood-Pewees are common all over the Blue Mountains along with Townsend’s, MacGillivray’s, Yellow-rumped, Orange-crowned and fewer Nashville Warblers. Yellow-breasted Chats and Gray Catbirds are easily found in many locations along with Western Tanagers, Lazuli Buntings, Black-headed Grosbeaks and many more. Out along the Columbia River you never know what you might find, a rare gull, tern, warbler, or flycatcher. A Northern Parula spent a week at Ft. Walla Walla Park and in 2016 a Black-throated Blue Warbler was found on a WOS Field Trip singing on territory in the Blue Mountains.

WINTER: A time for gulls: in 2017 there were 15 species of gulls in the Lower Columbia Basin. A Slaty-backed was found on the Snake River along with a Lesser Black-backed (first Washington record was at the Walla Walla River Delta). Blackbirds are also abundant, numbering in the thousands out along Dodd Rd. Rusty Blackbird is found almost every year and Tricolored Blackbird are always possible, though in fewer numbers the last couple years. Common Grackle have been seen in the county several times. Snow
geese now visit McNary NWR in huge numbers, up to 40,000 reported in one day. In towns and in the foothills Bohemian Waxwings, Pine Grosbeaks and Common Redpolls are always a possibility. In the foothills Northern Pygmy-Owls can usually be found, one February we had five in one day on an Audubon Field Trip.

Another reason Walla Walla County is so FUN to bird: it is a BIG county, and you can drive the county roads sometimes 75 miles and bird without seeing another soul, no traffic jams here!

Figure 18. Green-tailed Towhee. (Photo by © MerryLynn Denny.)

Figure 19. Bohemian Waxwing. (Photo by © Ollie Oliver.)
Garfield County – Matt Bartels

Garfield County is a tough one, but absolutely worth birding. The county list for Garfield only cracked 250 species this year and has more than 10 fewer species than the next lowest county. When it comes to rarities, the WBRC has reviewed only one record ever from Garfield County (surprisingly, a Long-billed Murrelet in 2001!). What makes Garfield so tough? First, Garfield is one of the smallest counties in the state [33rd] and with a population of under 2,300, it is the least populous of all counties. Add to that its location -- tucked into the southeast corner of the state, it is far from many of the state’s birders. Most importantly though, there is a lack of standing water – Garfield lacks much of anything in the way of lakes or ponds. The only major place to find water birds is the Snake River that runs along the north edge of the county. Indeed, other than Killdeer and Spotted Sandpiper, all other shorebirds are expected to be found less than annually in the county.

So, what makes Garfield fun to bird? All of the above, for starters! Garfield is somewhere where most of the birding is truly exploratory. eBird reports are few and far between and going to Garfield requires relying on habitat and luck to track down birds. Anyone feeling like they mostly bird by chasing other people’s discoveries might find it refreshing to be exploring Garfield county. Second, there is the Blue Mountains. Garfield County is one of the four counties in Washington lucky enough to share the Blue Mountains. In the summer you can escape some of the heat with a drive up to over 6,000 feet to look for mountain birds while enjoying beautiful views.

Columbia County – Matt Bartels

Columbia county is a lot of fun to explore. By some measures, I would expect it to have higher diversity: Walla Walla County has the highest species total of any eastern Washington county and forms Columbia’s western border. Lyons Ferry State Park, home to annual migrant rarities is just across the Snake River from Columbia, to the north. Nevertheless, Columbia has the second lowest county list, beating out only Garfield County to its east. Part of the reason has to do with the low population, just over 4,000 people live in Columbia County, mostly around Dayton. And a big part of the reason has to do with habitat – the northern half of the state is given over to agriculture and wind farms, with only the hollows and river edges producing much variety.
GRACE OLIVER

Nevertheless, there is lots to explore, from the shoreline of the Snake river, hoping for shorebirds and ducks, to the Blue Mountains in the south, where things like breeding Great Gray Owl, forest woodpeckers and more can be found. An outing in Columbia County is well worth it. Dayton makes an easy launching point, with hotels and a couple restaurants. As with Garfield County, there are often no recent eBird reports to chase after. Instead, exploration is the name of the game. Start along the river in the north early in the day, then head up into the mountains for the hotter afternoon.

Okanogan County – Heather Findlay

Okanogan County has a large diversity of habitats and birds:

- Shrub-steppe: Dominated by sagebrush and/or bitterbrush and grasses and forbs
- Ponderosa Pine Woodland: generally open, dominated by ponderosa pine with an understory dominated by either shrubs or grasses and forbs.
- Wetlands: Lakes, ponds, marshes including open water, water areas with emergent vegetation, and areas of seasonally wet soils. Many of these areas have a fringe of wetland vegetation. Water levels vary seasonally, and some lakes and ponds are alkaline.
- Riparian deciduous: along the Okanogan River and many other rivers, creeks, and streams
- Agricultural Lands

There are abundant birds year-round and 321 species have been reported. Spring migration includes many songbirds and occurs in late May and early June. Some exciting spring highlights have included Long-billed Curlew, American Redstart, Lazuli Bunting, American Bittern, Flammulated

Figure 21: Barn Owl in Snohomish County. (Photo by © Tony Spane.)

28 Washington Birds
Owl, Black-throated Sparrow, Rose-breasted Grosbeak, and of course various falcons, eagles, and hawks. Winter is a big birding season in the Okanogan, especially in the Okanogan Highlands. Specialty birds include Gray-crowned Rosy-Finch, Black-headed Grosbeak, Snow Bunting, Horned Lark, Lapland Longspur, Red Crossbill, White-winged Crossbill, Townsend’s Solitaire, Black-backed Woodpecker, White-headed Woodpecker, and occasionally the elusive Great Gray Owl. Along with the beauty of the landscape in Okanogan County, there are many birds to see and enjoy.

Snohomish County – Steve Pink and Carol Riddell

Snohomish County offers great birding opportunities. Habitats are as varied as mountain glaciers and alpine meadows to the inland marine waters of Puget Sound. It has everything in between: foothills, farms, several major river valleys, lakes, cities and suburban areas with fresh water and saltwater marshes. The county has yielded 370 species. One of its strengths is the variety of seabirds and shorebirds that appear each year. Most notable was the 2017 Swallow-tailed Gull, originally in Seattle, but then found at three locations in this county.

Figure 22: Swallow-tailed Gull. (Photo by © Ollie Oliver.)
ALTERED AVIAN HABITATS: SPREAD OF INVASIVE WEEDS ACROSS SOUTHEAST WASHINGTON

MIKE DENNY, 1354 SE Central Ave., College Place, WA 99324; walla2.birder@outlook.com. WOS member and formerly with the US Forest Service, Umatilla National Forest, and the Washington State Conservation Commission/Districts.

Figure 1: Western Walla Walla County and the degraded habitat saturated with invasive weeds such as cheat grass, yellow-star thistle, poison hemlock, rat tailed fescue and many more invasive weeds. (Photo by © Mike Denny.)

“The native habitat was in flux” is what I was told upon arriving in Walla Walla County the autumn of 1978 to go to college. These native habitats ultimately changed permanently due to expansive alterations by man on the landscape. Since my arrival here hundreds of thousands of acres of native habitat have been lost or greatly degraded by human actions. These habitat losses have largely occurred in the more arid regions of the Lower Columbia Basin in areas that once were dominated by shrub-steppe and bunchgrass habitats. Alterations occurred through wildfires, breaking out lands for irrigated center pivot agriculture and by invasion of highly invasive non-native weed species introduced and spread by ATVs, pickups, and farm implements.

The soils of this vast acreage of altered habitat are loess sandy soils with many areas once being large sand dunes such as Eureka Flats in western to northeastern Walla Walla County. Some dunes are greater than fifty feet high. The sands are the results of thousands of years of windstorms blowing off the sand bars in the Columbia River prior to the dams. Much of the sand
arrived on the Columbia River from north central Washington and from the Missoula Floods, the ancient Salmon River and the younger Snake River flowing into the basin.

Weeds that arrived over the last seventy-five years include eight species that greatly altered remnant native plant communities and outcompeted native species. These weed species are as follows: Russian Thistle (Tumbleweed, Salsola kali), Jim Hill Mustard (Tumble Mustard, Sisymbrium altissimum), Yellow Star-thistle (Centaurea solstitialis), Forage Kochia (Bassia prostrata), Prickly Lettuce (Lactuca serriola), Poison Hemlock (Conium maculatum), Spotted Knapweed (Centaurea stoebe) and Downy Brome (Cheatgrass, Bromus tectorum). I will concentrate on four of these species and their impacts/benefits to native bird populations. We will look at Russian Thistle, Forage Kochia, Yellow Star-thistle, and Downy Brome.

Russian Thistle: Introduced from Central Asia.

So, this all gets complicated fast. I will start with Russian Thistle. This is an amazing invasive weed covered with short, sharp spines that grows and blooms during the driest hottest period of the summer. It retains what moisture it finds in its roots. It has a network of capillary roots that come off the main tap root right at the surface of the soil. Their fine hair-like roots are just below the soil surface and collect any moisture coming as precipitation in mid-late summer.

This is a plant that does not start germinating until the middle of June in the most arid portions of the landscape. At the surface, well-drained sandy soils become bone dry and the ground surface reaches more than 110 degrees F during the middle of the day. The plant produces exuberant growth all through July and August. A mature plant with just the right amount of

![Figure 2: Russian Thistle. (Photo by © Dennis Paulson.)](image-url)
ground moisture for its tap root can grow to be six feet diagonally. More often they spread out until they grow into a neighboring Russian Thistle which stops their expansion. The average width is two to four feet with no room between plants. I have seen some disturbed soil sites so packed with these flattish round plants that they cover hundreds of acres.

These big, drought-resistant plants have blooms of colors ranging from green to pale pink to dark strawberry red. The blooms are now particularly important to native pollinators and are frequented by hairstreak butterflies, ants, and native bee species. They produce massive numbers of seeds, with a single mature plant producing upwards of 200,000 seeds. The seeds are distributed by the wind ripping the big plant off its tap root and blowing it like a wheel across the landscape, bouncing up and down and jarring seeds loose with each bounce off the ground. The plants blow into great piles or drifts sometimes reaching ten to fifteen feet deep. The drifts attract birds and rodents as well as a few reptiles. Some patches of tumbleweeds also act as a host to large numbers of mice, attracting Short-eared Owls, Rough-legged Hawks and American Kestrels during the winter months. Other birds that are drawn to these big dense plants are White-crowned Sparrows, Song Sparrows and House Sparrows near farms. Passerines are attracted to the insects, seeds, and thermal cover these plants provide.

There are two major issues with this plant, and they are related to altered fire regimes. One is that Russian Thistles once dry are loaded with oils, and if they catch fire, they burn extremely hot and very quickly, often burning thousands of acres in a short time. They do not allow for mosaic burns, and these fires kill and burn everything across a broad front. We have never located any bird species nesting in this invasive plant. So, all those thousands of acres covered with Russian Thistle are essentially closed to any bird nesting.

Forage Kochia: Introduced from Central Asia.

This is another invasive germinating in the early spring with two-leaf-stage plants that look like crushed velvet across the surface of the ground. It starts germinating in March when there is ample moisture. They grow along roads, fence lines, trails and edges of feedlots and other disturbed soil sites across the lower elevations in arid areas. Forage Kochia was intentionally introduced by western ranchers as it grows in very arid sites with a minimum of water and cattle have a real taste for it. This is a plant that can grow upwards to seven feet tall and a base spread of six-seven feet across. It has no spines or thorns and grows in stands so dense that they are exceedingly difficult to walk through for most wildlife. It, too, blooms in mid-summer and attracts some native bees and moths. No other plant species can grow where this big plant grows, as it blocks all light and takes up most of the moisture and nutrients.

In fall, this species has a striped main stem and may produce more than 100,000 seeds. It is at this point that large numbers of migrant sparrows flood into patches of kochia and feed on the seeds. Large flocks of White-crowned Sparrows, Song Sparrows, Lincoln’s’ Sparrows, California Quails and Mourning Doves all utilize these plants for food and thermal cover. 3–4-acre patches of kochia often harbor hundreds of White-crowned Sparrows all winter. Sparrows use the plants for feed as well as predator avoidance.
It is interesting in early winter that a large percentage of the sparrow flocks are HY birds with very few adult birds.

Yellow Star-thistle: Introduced from the steppe region of Eastern Asia.

Yellow Star-thistle is covered with large very sharp thorns and spines. It is closely related to the knapweeds. It is a very invasive plant that first appears as a floret flat on the ground as it establishes a tap root. It remains a floret all through that first year. By April of the next year, it starts to bolt and branch off a common main stem. The plant does not mat the ground, but rather grows in the interstitial spaces between woody shrubs. It can grow in any type of soil as long as it receives direct sun. It cannot survive in dense shade. This nasty invasive has greatly altered hundreds of square miles of native grasslands all over the foothills of the Blue Mountains up to 3200 feet in elevation. The plant has several interesting recovery strategies. Should the top two-thirds of a mature plant be mowed off, the plant will produce secondary side stems that will also bloom. This weed produces six to ten multi-floral flowerheads that are bright saffron yellow, hence the name.

![Figure 3: Blooming Yellow-star Thistle in Western Walla Walla County. Its seeds are carried by vehicles, livestock, and people’s shoes and socks. Highly invasive and death on horses due to toxins that stop peristalsis in the throat. (Photo by © Mike Denny.)](image)

Their blossoms are incredibly attractive to many native butterfly species such as Sara Orangetips, Desert Marble, Big Marble and Becker’s White to name a few. The bright blooms also attract bees which pollinate it as well. Honey from Yellow Star-thistle is superb in taste and color.

This very prolific weed spreads very rapidly and can alter the plant communities it moves into by competing for water, nutrients, and pollinators. Once the plant has produced seed it dies and dries out. The seed heads
look very much like a Canada Thistle (Cirsium arvense) seed head. Seeds are blown by the wind like most thistles. This weed has unexpectedly drawn the attention of small finches during the winter months. Species such as American Goldfinch, Pine Siskin, Common Redpoll and House Finch all feed on its seeds. Finches will gather in flocks of hundreds in highly infested areas and feed for weeks on the available seed. The seed heads have a halo of inch-long thorns to discourage ungulates from feeding on the plant. The long, very sharp thorns often stick into these finches’ heads and we have seen birds with thorns protruding from around the face, ear coverts and throat areas. Yet native birds keep feeding on these non-native weeds. We have never observed any sparrows utilizing this weed species.

Over time, in sites where star-thistle dominates, the diversity of the plant community drops way off and within a few years there will often only be star-thistle, North Africa Grass and Cheat Grass left. North Africa Grass (Ventenata dubia) is yet another highly invasive Asian grass species. The spread of non-native invading plants has altered use patterns and the forage base for many different native bird species. Where once there were healthy vibrant native grasslands and shrub-steppe plant and animal communities there are now only weeds. This greatly reduces the numbers and diversity of native bird species across vast areas in this region.

Downy Brome (Cheat Grass): Introduced from Central Asia.

This super invasive grass species has been in the Western states since the late 19th century. It arrived in trade with Asia, primarily China. This grass has changed so much since its arrival in western North America. It altered fire regimes, obliterated native plant communities, allowed the growth of other weed species, closed vast areas to native ungulates and birds due to habitat loss, and demolished arid land insect numbers.
Cheat Grass first emerges from seed in late August or early September and grows to a four-leaf stage which it holds through the colder winter weather. As spring approaches and the ambient air temperatures increase, this grass begins to grow once again. Meanwhile most of the native grass species are just starting to awaken from dormancy or just emerging from seed. By early April, Cheat Grass has already bolted and produced inflorescent and is wind pollinated, weeks ahead of any of the native grasses save for Sandberg Bluegrass (Poa secunda) which has also bolted and produced inflorescences. By early May, the Cheat Grass then produces ripe seeds with inch long awls tightly wound like a spring. These seeds have micro-hairs that all angle up towards the awl. So once the grass seeds hit the ground, they work their way into the soil as the awl starts to unwind driving the seed into the ground. The seeds then germinate that same fall. By late May the Cheat Grass plants are ready for one event and that is to burn. Cheat Grass fuel loads are responsible for wiping out thousands of acres of shrub-steppe plant communities across the west. Cattle can exacerbate this issue, as open range animals spread cheat grass wherever they wonder. ATVs, pickups and 4x4s also spread Cheat Grass seeds everywhere.

Birds that benefit from this grass species are Chukar, Gray Partridge and California Quail, which all feed on the young plants. I do not know of any birds that utilize the seeds, though many birds do build nests from the grass’s dry stems, including Brewers Sparrows, Lark Sparrows, Sage Thrashers, Black-throated Sparrows, House Sparrows and House Finches. I have also found Cheat Grass stems in Western Wood-Pewee, Say’s Phoebe, Townsends Solitaire, Mountain and Western Bluebird, American Robin, and European Starling and nests.

Birds have been the losers when it comes to Cheat Grass, thanks to fires wiping out so much sage and juniper habitat along with dry Ponderosa Pine forests.

Cheat Grass has spread into most areas east of the Cascade Mountains. It requires a minimum of 6 inches of precipitation annually and can grow with as much as 24 inches annually.

CONCLUSION

As weather patterns are altered and humans disregard habitat and wildlife needs, weed species will grow to be the dominate plant communities. Native birds will lose vast areas of habitat unless we start doing serious weed management and habitat restoration.

BIBLIOGRAPHY

DECLINE OF WASHINGTON STATE SHRUBSTEPPE OBLIGATE BIRDS

SCOTT DOWNES, 5011 Madera Way Yakima WA 98908, downess@charter.net. WOS member.

Figure 1. Inter-Mountain Basins Big Sagebrush Steppe in good habitat condition. Whiskey Dick Unit of LT Murray Wildlife Area, Kittitas County, Washington. (Photo by © Scott Downes).

Washington State’s shrubsteppe habitat has been in continual decline for over a century. As a result, the populations of bird species that are closely associated with this habitat, referred to as obligates, are also declining. Several obligate bird species are listed as threatened or endangered by Washington Department of Fish and Wildlife (WDFW) while others are currently candidates for listing. This paper will focus on the declines of the listed species while touching on the candidate species. Most resources have been devoted to tracking the populations of listed species; the trends of candidate species are somewhat more anecdotal.

In Washington State, three shrubsteppe obligate species are listed by WDFW: Ferruginous Hawk (*Buteo regalis*), Greater Sage-grouse (*Centrocercus urophasianus*) and Columbian Sharp-tailed Grouse (*Tympanuchus phasianellus columbianus*). Ferruginous Hawk and Greater Sage-grouse are currently listed as threatened, while Columbian Sharp-tailed Grouse is endangered. None are listed under the federal Endangered Species Act (ESA), although Greater Sage-grouse was a candidate until 2015. Shrub-
steppe obligate birds that are currently Washington State candidates for listing are Burrowing Owl (*Athene cunicularia*), Loggerhead Shrike (*Lanius ludovicianus*), Sagebrush Sparrow (*Artemisiospiza nevadensis*) and Sage Thrasher (*Oreoscoptes montanus*).

LISTED SPECIES POPULATION TRENDS

Ferruginous Hawk

Ferruginous Hawk was listed as sensitive in 1981 by the Washington Department of Game. This was before existence of a state threatened status. Upon creation of the state threatened category, Ferruginous Hawk was listed as threatened in 1983 (WDFW, 1996), which remains the current listing status. Ferruginous Hawk is recommended for endangered status in Washington State by WDFW through a periodic status review (Hayes and Watson, 2020). The recovery plan states that the species would be considered for down-listing from threatened when the state population averaged at least a five-year average of 60 breeding pairs distributed among the south, central, and north recovery zones (WDFW, 1996). No criteria for up-listing from threatened to endangered status were identified.

Greater Sage-grouse

Greater Sage-grouse was once numerous in Washington State. Lewis and Clark wrote in their journals, as summarized from their journals by Schroeder (2003), “The cock of the Plains is found in the plains of Columbia and are in Great abundance from the entrance of the S. E. fork of the Columbia (Snake River) to that of Clark’s river (Deschutes River).” As of 2016, the estimated occupied range in Washington was about 8% of the historical range (Stinson, 2016). The statewide population is estimated to have declined by more than 50% from 1970-2012 (Stinson, 2016). In 2015, the statewide population was 1,004 birds (Stinson, 2016). The population estimate as of 2019 was 676 birds (Schroeder, et al., 2019a).

Greater Sage-grouse was listed in Washington State as threatened in 1998 after being listed as a candidate species in 1991 (Stinson et al., 2004). Recovery objectives were set at down-listing from threatened if the breeding season population averages at least 3,200 birds in Washington for a 10-year period with active lek complexes in six or more management units. The species would be considered for up-listing to endangered if there is a breeding season population of less than 650 birds and the population continues to
decline (Stinson et al., 2004). Greater Sage-grouse was listed as a candidate species under the ESA until 2015 when its status was determined to not be warranted for listing by the United States Fish and Wildlife Service (USFWS, 2015). Prior to the 2015 decision, the Washington population was considered a distinct population segment and was determined to be “warranted but precluded”. However, since that 2015 decision, genetic analyses have determined the Washington population to demonstrate qualities of a distinct population segment, including more distinct than other populations that have been ruled to be distinct population segments. As of this publication date, Greater Sage-grouse is recommended for endangered status in Washington State by WDFW through a periodic status review and its awaiting final decision by the WDFW Commission (Stinson, 2020).

Columbian Sharp-tailed Grouse

Columbian Sharp-tailed Grouse was considered the most abundant game bird in eastern Washington during the 1800’s (Stinson and Schroeder, 2012). Their historic range in Washington State stretched south to the Columbia River border with Oregon and included portions of all 20 Eastern Washington counties. Their current range consists of seven small, mostly disconnected populations in Douglas, Lincoln, and Okanogan Counties (Schroeder and Stinson, 2012). Population declines started in the late 1800’s, which led to the legislature to reduce the hunting season in 1897, further contracting it through the 1930’s when a moratorium was placed on hunting of the species statewide. (Shortened seasons were opened intermittently for several decades following the moratorium.) The Washington State population declined to an estimated 1000 individuals by the mid 1980’s and has ranged between 500 and 1000 individuals through 2017 (Stinson, 2017). The Columbian Sharp-tailed Grouse, whose historic range included much of Washington, British Columbia, Idaho, Oregon and parts of Utah, Montana, California, and Nevada, is considered to be the rarest of the six subspecies of Sharp-tailed Grouse (Stinson and Schroeder, 2012).

After a status review in 1998, the species was listed as threatened in Washington State. The Washington State recovery plan states that the species will be considered for down-listing if there is at least one population in the state that has averaged greater than 2,000 birds for a 10-year period and the total number of individuals in Washington has averaged greater than or equal to 3,200 birds for a 10-year period. According to the plan, the species was to be considered for up-listing to endangered if the state population fell to less than 450 birds. In 2018, the species was up-listed due to declining population trends, particularly in some of the sub-populations, and the lack of population sustainability in each of the disconnected population groups without augmentation (Schroeder et al, 2019b).

CANDIDATE SPECIES POPULATION TRENDS

Washington State candidate species population trends are not tracked as systematically as those of listed species. One long-term dataset that can be used to potentially track the population trends of these shrubsteppe obligate bird species is the United States Geological Survey (USGS) Breeding Bird
Survey (BBS). Trend estimates are summarized for Washington State BBS data for Burrowing Owl, Loggerhead Shrike, Sagebrush Sparrow and Sage Thrasher and include data from 1966-2015 (Sauer et al., 2017). These trend estimates are assigned data credibility categories of blue, yellow and red. Yellow and red categories have substantial imprecision because of small numbers and large error estimates with red data considered the most likely to have questionable reliability. Even data falling into the blue category (highest data credibility) should be considered with caution and further examination of the trends is warranted.

Examining the BBS trend estimates for the candidate species during the 50-year period of analysis (1966-2017) provides mixed results among shrubsteppe obligate bird species trends. Data are presented as a percent decline over the period of record within 95% confidence intervals (CI). For some species such as Burrowing Owl and Sagebrush Sparrow, data credibility was low for a Washington only analysis, due to sample size (few routes detecting the species), so trends were examined for the Great Basin, a larger area that encompasses Washington State. Burrowing Owl showed a declining trend (-0.58% [-2.03 to 0.95]) with yellow data credibility. Loggerhead Shrike also displayed a declining trend (-0.20% [-2.98 to 2.93]) with yellow data credibility. Sage Thrasher showed a slight positive trend (0.28% [-1.58 to 1.91]) with blue data credibility. Sagebrush Sparrow indicated a slight negative trend (-.026% [-1.56 to 1.13]) with blue data credibility.

The margin of error for all four species trends overlaps zero, indicating that, according to BBS survey data, these species are, at best, displaying stable population sizes. In addition, low samples sizes, particularly for Burrowing Owl and Sagebrush Sparrow, contribute to the difficulty in drawing conclusions about population trends. Other data sources demonstrate that Sagebrush Sparrow prefers large expanses of unconverted shrubsteppe and thus, their Washington State population is likely declining due to habitat loss (WDFW, 2015; Vander Haegen 2005). Burrowing Owl trend estimate indicate probable population decline, which matches numerous anecdotal observations by wildlife biologists studying the species in Central and Eastern Washington.

SHRUBSTEPPE HABITAT DECLINE

The term “shrubsteppe” refers to a collection of ecological systems. In Washington State, there are four ecological systems that are grouped under the heading of shrubsteppe: Columbia Plateau Low Sagebrush Steppe, Inter-Mountain Basins Big Sagebrush Steppe (named for Big Sagebrush (Artemesia tridentata)), Inter-Mountain Basins Montane Sagebrush Steppe, and Inter-Mountain Basins Semi-Desert Shrubsteppe (Rocchio and Crawford, 2015a). An example of Inter-Mountain Basins Big Sagebrush Steppe in good habitat condition is shown in Figure 1. Three of the four ecosystems are listed as either imperiled or critically imperiled. Columbia Plateau Low Sagebrush Steppe and Inter-Mountain Basins Semi-Desert Shrubsteppe are listed as critically imperiled while Inter-Mountain Basins Big Sagebrush Steppe is listed as imperiled. “Critically imperiled” is defined as “at very high risk of extirpation in Washington due to very restricted range, very few occurrences, very steep declines, severe threats, or other factors”
while “imperiled” signifies “at high risk of extirpation in Washington due to restricted range, few occurrences, steep declines, severe threats, or other factors” (Rocchio and Crawford, 2015b).

The WDFW 2015 State Wildlife Action Plan classified associated wildlife species as “closely associated” and “generally associated” with an ecological system (SWAP, WDFW, 2015). Closely associated is defined as the species demonstrates preference for the ecological system and relies on the system for some or all of its life stages. Generally associated is defined as a species is found in that ecological system but does not prefer it. Of the listed species, Greater Sage-grouse is closely associated with all three of the

Figure 2. Historical (top) vs. current (bottom) shrubsteppe and steppe in eastern Washington. Green = forest; brown = shrubsteppe/steppe; tan = agriculture; yellow = Columbia Plateau ecoregional boundary. From WDFW Management recommendations for Washington’s priority habitats: managing shrubsteppe in developing landscapes, Azerrad et al., 2011.
imperiled systems, Ferruginous Hawk with two (Inter-Mountain Basins Big Sagebrush Steppe and Inter-Mountain Basins Semi-Desert Shrubsteppe) and Sharp-tailed Grouse with one (Inter-Mountain Basins Big Sagebrush Steppe). Sharp-tailed Grouse is closely also associated with another imperiled ecosystem, Columbia Plateau Steppe and Grassland. Of the candidate species, Burrowing Owl, Sagebrush Sparrow and Sage Thrasher are closely associated with Inter-mountain Basins Big Sagebrush Steppe and Loggerhead Shrike is generally associated with this ecosystem.

In the 2015 SWAP, habitat loss or degradation was listed as a factor for decline of all seven species (WDFW, 2015). Besides habitat loss and degradation, other contributing factors include decline of burrowing mammals (Burrowing Owl and Ferruginous Hawk), nest disturbance (Ferruginous Hawk), and wire fence collision (Greater Sage-grouse). Nest predation in the grouse species is a contributing factor but high predation rates are likely correlated with reduced quality of habitat (Stinson, 2016; Stinson, 2017).

Primary factors leading to the decline and degradation of the imperiled ecosystems on which the obligate species rely include altered fire regimes, conversion of habitat (development) and invasive species (particularly annual grasses). Habitat loss or decline is defined as a conversion of the habitat, such as conversion of shrubsteppe to irrigated agriculture. Degradation is defined as reduced quality and function of the habitat, such as shrub loss through fires or increases in annual grasses. An overview of the loss of shrubsteppe habitat in the Columbia Plateau is shown in Figure 2. Altered fire regimes and increased invasive species are highly interrelated and collectively can be referred to habitat degradation (WDFW, 2015). Competing uses such as improper grazing management with overutilization of native bunchgrasses can lead to increases in annual grasses such as cheatgrass (Bromus tectorum) and overabundance of native shrubs (Downes, 2004). These ecological imbalances can lead to a higher intensity fire regime where shrubs such as sagebrush are lost and often take several decades to return to viable habitat for species such as sage-grouse (Stinson, 2016).

While fire was historically part of the shrubsteppe landscape, the size and scale of fires have increased. Fire data from the Washington Department of Natural Resources (DNR) shows, from 2000-2010, 15 fires in the Columbia Basin of Washington measured more than 5,000 acres, 12 more than 10,000 acres, six more than 25,000 acres and two more than 50,000 acres (DNR, 2019a). From 2011-2020, 29 fires measured more than 5,000 acres, 29 more than 10,000 acres, seven more than 25,000 acres and 13 more than 50,000 acres, Figure 3. Numbers are categorical, not cumulative, meaning that each number represents a unique fire, and a 50,000-acre fire wouldn’t also be included in the 10,000- and 25,000-acre category. In 2020, the fires were particularly large and occurred in critical habitat for these priority species. Three fires in particular, the Pearl Springs fire in Douglas County burned more than 223,000 acres, much of it in critical habitat for Greater Sage-grouse and Sharp-tailed Grouse. The Cold Springs fire in Okanogan County burned more than 189,000 acres, including critical Sharp-tailed Grouse habitat. The Whitney fire in Lincoln County burned over 127,000 acres and again occurred in critical habitat for both grouse species.
Figure 3. Large Fire (>100 acres) History in the Columbia Plateau from 2000-2020. (Map by © Scott Downes).
The amount of sagebrush lost in each of these fires has not been calculated. Sagebrush is known to be sensitive to fire, that is, it has poor survival after even moderate intensity fires and extremely poor after high intensity fires. Some high-intensity fires have documented near complete shrub loss. Figure 4 shows the replacement of a sagebrush dominated landscape to an annual grass dominated landscape following the 2016 Blackrock fire in eastern Yakima County. As these fires had areas of both moderate and high intensity, likely there was significant shrub loss in each of these fires. Big sagebrush relies on re-seeding from surviving plants rather than regeneration from the roots.

Agriculture led to much of the early habitat conversion in the Columbia Basin and continues to expand into previously unconverted shrubsteppe today. It is considered a leading factor in shrubsteppe decline. The Washington State Growth Management Act was enacted in 1990. One of the objectives of growth management was the regulation of critical habitats such as shrubsteppe. Agricultural activities are largely exempt from the Growth Management Act. The Voluntary Stewardship Program was enacted in 2011 to collaborate with private landowners on solutions for managing agriculture while preserving critical habitats.

Due to the complexity of ecological studies and constantly changing conditions, it is difficult to calculate the precise amount of remaining shrub-
steppe. A 1996 study of Washington State shrubsteppe estimated that 40% of the historical areas persisted (Dobler et al., 1996). Since that study, ongoing habitat conversion and many of Washington State’s largest fires have resulted in ecologically intact shrubsteppe landscapes being defined as imperiled or critically imperiled and their obligate birds either listed or candidates. Ecologically intact shrubsteppe, particularly big sagebrush (A. tridentata) communities that are sensitive to fire disturbance and exist in agriculturally prime deep soil, is likely now lower than the 1996 estimate of 40 percent.

While threats such as fire and development continue to put pressure on shrubsteppe ecosystems and their obligate species, there are some positive processes that may help to sustain habitat for these declining species. The U.S. Department of Agriculture farm bill programs, such as the Conservation Reserve Program, and other versions of this program, such as State Acres for Wildlife, have been documented to provide functional habitat for the obligate shrubsteppe birds (Schroeder and Vander Haegen, 2006). These programs do not replace shrubsteppe ecosystems but rather, help to sustain functional habitat for these at-risk species. Some progress has been made on wildfire prevention by multiple conservation coalitions and DNR included shrubsteppe (called “rangeland”) in its updated Washington State Wildland Fire Protection 10-Year Strategic Plan (DNR, 2019b) with strategies to reduce spread of fire and provide for post-fire habitat recovery.

ACKNOWLEDGMENTS

I am grateful to Kim Thorburn for her review of this manuscript and the improvements from her suggested edits.

LITERATURE CITED

DIVERSITY, EQUITY, AND INCLUSION IN BIRDING IN WASHINGTON STATE AND BEYOND

JENNIFER KAUFFMAN, WOS President, c/o WOS, 12345 Lake City Way NE, #215, Seattle, WA 98125, president@wos.org

CINNY BURRELL, 9234 Ninth Ave NW, Seattle, WA 98117, cinnyb@yahoo.com. WOS member.

“The list your privileges. Know your range. Can you wander like a warbler without wondering who’s watching you with suspicion? Keep your personal feel guide close. Equity is a hard bird to find. Diligently search for it in places with common ground. Listen intently to the stories of others, just as you would strain, in the dim dawn hours, to discern the lisps of migratory birds overhead. Discomfort is growth.” (Lanham 2020)

The Washington Ornithological Society (WOS) Board met recently to discuss how our organization can do more to address the barriers that limit diversity in birding in Washington State. WOS recognizes the importance of addressing equity and inclusion as an organization and throughout the birding community. We acknowledge that change within an organization must come from the board and leadership, as well as from individual members doing their own work toward understanding their own biases, stereotypes, and racism.

Birding and outdoor organizations across the country have started looking at systemic racism and are responding in a variety of ways. From issuing statements against racism, to hiring equity consultants to provide training for staff and volunteers, to developing action plans with specific deadlines and measurable results, organizations are making strides to eliminate barriers. Some ornithology groups are joining the call to rename bird species that are named after white men (McCormick 2020), while others are committing to diversify their boards and leadership and seeking the voices of diverse people for their speaker’s programs and publications.

WOS is an all-volunteer, statewide educational organization with nearly 500 members. Our mission is: To provide a forum for birders from throughout the state to meet and share information on bird identification, biology, population status, and birding sites. Membership is open to all persons interested in birds and birding. We recognize that WOS’s membership has historically been predominantly white and, although open to all, the culture of the birding community can be seen as exclusive.

WOS is exploring how it can be more inclusive and welcoming to all ages, genders, races, and abilities. We recognize that some of the barriers to birdwatching can
come from within an organization, and some may come from the broader society.

Last summer we heard from a number of our volunteers and members a desire to do more with regard to equity and inclusion in birding. WOS began by partnering with the Oregon Birding Association to have Dr. J. Drew Lanham provide the keynote address for the 2020 virtual conference. Those of us who read Dr. Lanham's book, *The Home Place: Memoirs of a Colored Man’s Love Affair with Nature*, were inspired to dig a little deeper into our own understanding and experience of the intersection of racism and birding.

As a mostly white organization, we realize that we (white people) need to educate ourselves and take on our share of this work. The nature of systematic racism and white privilege allows white people to avoid thinking critically about race, racism, and whiteness. Racism (and lack of diversity in organizations) will thrive as long as we continue to be silent and unaware.

We also recognize that we need to understand what diversity means in Washington State. Many use the acronym BIPOC (Black, Indigenous, People of Color), but the term is not specific or inclusive. Non-white racial groups represented 21.3% of Washington's population in 2019, with Asians making up the largest minority racial group (Office of Financial Management, 2019). The Hispanic/Latino population is increasing steadily in Washington, almost doubling during the 1990s and reaching 13% of the population by 2020.

The WOS Board encourages our members and communities to take the following steps on the journey for equity, inclusion, and diversity (adapted from The Mountaineers):

1. **Learn:** We need a common language. Familiarize yourself with terms such as race, equity, diversity, bias, privilege, inclusion, micro-aggression, racism, racist, antiracist, intersectionality, BIPOC, stereotype... and their definitions. Join a discussion group or start your own. Seek experiences that put you in settings with a more diverse population than you are used to.

 Diversity: All the characteristics that make a person unique (usually defined by a few social categories such as race, ethnicity, gender but also include age, religion, education, physical ability, occupation, etc.). Diverse organizations reflect the society they are in.

 Questions: What identities define me? How might others define me? What identities define WOS? How do others see WOS?

 Equity: Often confused with equal, equity is fair treatment that allows access, opportunity, achievement, and belonging for all people.

 Questions: What ways does WOS demonstrate equity? What ways can WOS improve on provide fair access and birding opportunities for all?

 Inclusion: Creating an environment that ensures all people feel welcome and valued. Inclusion eliminates barriers, exclusions, and intolerance within an organization and its membership.

 Questions: What ways am I and my birding friends being inclusive? How am I (or WOS) being exclusive? What ways can I (and WOS) be more inclusive?
DIVERSITY, EQUITY, AND INCLUSION IN BIRDING

2. Reflect: Get to know your own biases. Be honest. Make note when your own stereotypes and biases come up, and consciously change the thoughts. (Ask, is this idea true, or is this something I have absorbed from society or my culture?) Seek to understand privilege and explore how you have benefitted from (or suffered from) privilege.

3. Share: Conversations can shift culture; invite dialog with friends and other associates about the things you are reading and learning. Talk with a trusted friend about your conscious and sub-conscious biases. Look for opportunities to engage with people outside of your age/gender/racial circle.

WOS as an organization sees the need to be both outward facing and inward facing on this journey. We have begun to identify and reach out to BIPOC organizations in Washington state. We recognize we need to be welcoming and inclusive…but also be outward facing: supportive of BIPOC-led organizations, initiatives, and businesses.

WOS appreciates the efforts of individual members (and speakers) who have taken initiative to learn the issues, have joined discussion groups, compiled, and shared resource lists, and made efforts to support or donate to organizations that support BIPOC folks in the outdoors. We encourage our members and all birders to join us on this journey. Resources and opportunities for learning abound; a few resources are included in this article to provide a place to start. The authors of this article welcome your thoughts and ideas.

LITERATURE

REGULARLY OCCURRING SPECIES:
ANALYSIS, UPDATES AND EXPANDED KNOWLEDGE

Snowy Plover at Grayland, Grays Harbor County on 3 September 2020. Snowy Plover numbers recorded on the January 2021 annual winter surveys in Recovery Unit 1 (Oregon and Washington) were a record breaking 703. This included 52 plovers at Midway Beach, 111 at Leadbetter Point, and four along South Long Beach peninsula. Recovery goals for these two states are 200 breeding plovers for Oregon and 50 for Washington. These numbers indicate that management efforts over the past 30 years in Oregon and Washington have been successful at increasing plover populations well above recovery goals, and has resulted in plover reoccupying former nesting sites within the recovery unit. In 2021, Copalis spit recorded a nesting plover for the first time since mid-1980’s. In recent years plovers have successfully nested in Washington at Midway Beach, Graveyard Spit, and Leadbetter Point/Long Beach peninsula. Dave Lauten, Oregon Biodiversity Information Center.

(Photo by © Dennis Paulson.)

TABLE OF CONTENTS
SWITCHING SWANS: CHANGES IN SWAN SPECIES COMPOSITION IN NORTHEASTERN WASHINGTON

MARTHA JORDAN, Northwest Swan Conservation Association, 914 164th St SE, PMB 272, Mill Creek, Washington 98012; martha@nwswans.org.

KYLE A. SPRAGENS, Washington Department of Fish and Wildlife, P. O. Box 43200, Olympia, Washington 98504-3200; kyle.spragens@dfw.wa.gov.

ABSTRACT: The species composition of swans in the North Puget Lowlands region of western Washington has changed from being dominated by Tundra Swan prior to 1990, to dominated by Trumpeter Swan after 1996. While overall Tundra Swan winter numbers have remained relatively stable, Trumpeter Swan winter counts now account for more than 75% of all swans in western Washington, and 80-94% of all swans recorded in Whatcom, Skagit, and Snohomish counties.

Figure 1: Swans in a Skagit Valley corn field. This mixed flock dominated by Trumpeter Swan, is now a common site with only three out of 145 individuals being Tundra Swan (example: front-left, notice yellow loral patch). (Photo by © Martha Jordan).

Swans are the largest members of the family Anatidae, the waterfowl. In North America, two native species are present, the smaller Tundra Swan
(Cygnus columbianus) and the larger Trumpeter Swan (C. buccinator). Though both swan species were documented in Washington wetlands within journal entries from Lewis and Clark’s Expedition along the Lower Columbia River (1806), historical characterization of both species throughout Washington, prior to a period of landscape alteration to their native wetland habitats and exploitation of the species’ themselves, were never conducted or lack context in the natural history record. Therefore, interactions between these two species are not fully understood, but Washington’s geographic position in the Pacific Flyway offers a unique opportunity to observe both species during winter (Figure 1).

Observational surveys conducted between 1987 to 2019 have shown a shift in abundance and species composition of Tundra Swan and Trumpeter Swan wintering in the North Puget Lowlands of western Washington.

The North Puget Lowlands region encompasses a gradient of wetland types from intertidal mudflats and marshes to inland low-lying river floodplain valleys and forested ponds. This region, located in the western portions of Whatcom, Skagit, and Snohomish counties in northwest Washington (Figure 2), is now dominated by agricultural lands, including dairy farms, some of which unintendedly provide important replacement foraging habitats to alleviate native wetland losses (Collins 2000, Brophy et al. 2019).

Figure 2: Map of Washington State showing the North Puget Lowlands region of western Whatcom, Skagit, and Snohomish counties (gray shade).

Swan surveys were conducted as Washington’s-portion of the long-term (1955-2016) Mid-winter Waterfowl Surveys (MWS), as part of a larger multi-species effort throughout the Pacific Flyway but have transitioned to the Washington Department of Fish and Wildlife continuing the surveys from 2017 to present, for select waterfowl species. No change has occurred in survey methodology during this timeframe. All swan wintering areas in Whatcom, Skagit, and Snohomish counties were surveyed during mid-January, with each observer assigned an area to cover along ground-based observation routes. Some parts of Snohomish County were covered by aerial survey where ground counts were not possible. Observed flocks
were recorded to field-level and scanned for species and age compositions of all swans present in the flocks. Swan flocks that could not be accurately assessed for species were recorded as “Unidentified Swans” for inclusion in the total swan count but excluded from comparisons of species composition. The total swan count represents the sum of all observations during the annual MWS effort and is considered a census in the North Puget Lowlands.

Tundra and Trumpeter Swans found in the North Puget Lowlands prior to 1990 numbered less than 2,000 individuals, accounted for less than 30% of all swans in western Washington (Figure 3), and were dominated by a minimum of 60% Tundra Swan (Figure 4). Over the next 10 years (1990-1999), a conspicuous switch in species composition occurred with Trumpeter Swans accounting for more than 60% of all swans by year 2000 (Figure 4). Since 1996, Trumpeter Swan has consistently been the more numerous species recorded in the North Puget Lowlands. Over the most recent five years (2015-2019), counts of 12,690 – 16,656 Trumpeter Swans have accounted for 85% of the total swans wintering in western Washington (Figure 3) and species composition in the North Puget Lowlands is now dominated by Trumpeter Swans (80-94%, Figure 4).

![Figure 3: Summary of counts from annual Mid-winter Waterfowl Survey efforts for Trumpeter Swan (TRUS, yellow bar), Tundra Swan (TUSW, blue bar), and Unidentified swans (UNSW, hatched bar) in the North Puget Lowlands (NPL) from 1987 to 2019. Dashed line indicates the proportion of total swans in western Washington (prop. wWA) accounted for by the North Puget Lowlands during this same time period.](image)

Tundra Swans in Washington are managed and monitored as part of the Western Tundra Swan population (Pacific Flyway Council 2017), and recent detailed marking studies, using neck collars and satellite telemetry, have shown a strong affinity with breeding areas along the Alaska Peninsula (Ely et al. 2014, Ely and Meixell 2016). Specifically, Tundra Swan wintering...
in the North Puget Lowlands is highly associated with the smaller breeding concentration using tundra-habitats along the Lower Alaska Peninsula (near Cold Bay, Alaska), but demonstrate a unique strategy of individuals altering winter site selection between Alaska and Washington and changing that choice between winters (Ely and Meixell 2016). Whereas Tundra Swan only passing through the North Puget Lowlands to winter in the Lower Columbia River are highly associated with tundra-habitats of the Bristol Bay Lowlands region (near King Salmon, Alaska). While overall, the Western Population of Tundra Swan has exhibited significant population growth, the Bristol Bay Lowlands breeding segment has remained stable in numbers, whereas the Lower Alaska Peninsula breeding segment is not consistently surveyed and is the least likely to experience interchange from the other breeding-segments (Ely et al. 2014, Pacific Flyway Council 2017).

Trumpeter Swans in western Washington are part of the Pacific Coast Trumpeter Swan population, with breeding swans associated with boreal forest-habitats primarily in regions of interior Alaska (Pacific Flyway Council 2006). Breeding surveys have documented a sustained growth in this population, consistent with sustained increases in winter counts documented in Washington’s MWS surveys (Groves 2017).

![Figure 4: Proportion of Tundra Swan (TUSW, blue line) and Trumpeter Swan (TRUS, yellow line) observed in the North Puget Lowlands region from 1987 to 2019.](image)

The observed switch during winter counts in the North Puget Lowlands from predominately Tundra Swans to Trumpeter Swan dominated is undoubtedly related to different population trajectories experienced by the two species over the past 30 years, especially when appropriate breeding area affinities are considered. However, the rebounding and expanding
SWITCHING SWANS: CHANGES IN SWAN SPECIES COMPOSITION

Trumpeter Swan population (Groves 2017), and a small, unique, and stable breeding-segment of the Tundra Swan population (Ely and Meixell 2016) does not explain observed contraction in Tundra Swan distribution during winter months. Notably, the total number of Tundra Swan has remained at approximately 1,500 individuals (range: 588-2,742), but these individuals were previously more widespread in distribution across all three counties in the North Puget Lowlands. Yet, since 2015, the species is now scarcely encountered in Whatcom and Snohomish counties, with less than 150 individuals observed outside of Skagit County.

Without previous understanding of how these two species interacted at comparable population sizes, their current overlapping winter ranges taking into consideration a drastically altered landscape, changing food availability, and further environmental influences is only now being realized in the North Puget Lowlands. Historical insights during winter and migration periods are limited in these three counties, but significant change has occurred in this region related to wetland habitat types and shifting land use practices. Wetland loss in this region has been shown to exceed the national average, to the point where historical habitat types preferred by swans are no longer displayed on topographic maps (Collins 2000, Brophy et al. 2019). The lack of natural forage options, has placed a higher degree of dependence for both species upon farmlands, including dairy pastures, harvested agricultural crops, and cover crops (Petrie 2013). However, since the late-1980s significant changes have altered the availability and timing of these important alternative foraging areas, including: 1) the abundance and location of dairy farms, 2) shifts of crop types from grains, carrots, and peas to potatoes, dairy silage corn, and less waterfowl-beneficial crops, 3) strategies to improve nutrient retention and reduce soil erosion through the planting of cover crops, and 4) improvements to draining standing water prompted by flooding events in the 1990s.

Future efforts to understand the relationship between these various influences on the abundance and distribution of both swan species would provide land managers and cooperative partnerships valuable information to address information gaps, anticipate future needs towards meeting seasonal requirements for both species, and craft appropriate conservation and management strategies in the North Puget Lowlands region.

ACKNOWLEDGEMENTS

The survey data summarized represents a tremendous level of staff, cooperator, and volunteer time and efforts in western Washington. A special thank you to the many career Washington Department of Fish and Wildlife employees and generous volunteers that this time-series spans. Our understanding of Washington’s waterfowl resources is in a better place because of your dedication.

LITERATURE CITED

Brophy L. S., Greene, C. M., Hare, V. C., Holycross, B., Lanier, A., Heady, W. N., O’Conner, K., Imaki, H., Haddad, T., and Dana, R. 2019 Insights into estuarine habitat loss in the western United States using a new method for mapping
SPRUCE GROUSE AND CLIMATE CHANGE: CANARY IN THE COAL MINE?

MICHAEL A. SCHROEDER, Washington Department of Fish and Wildlife, P.O. Box 1077, Bridgeport, WA 98813; Michael.schroeder@dfw.wa.gov.

Figure 1: Male Franklin’s Spruce Grouse performing the tail fan display at Mutton Creek, WA. (Photo by © Michael Schroeder)

ABSTRACT. Between 1993 and 2020 I conducted research on Spruce Grouse (Falcipennis canadensis) at 31 different study areas in Washington, Oregon, Alberta, British Columbia, and Alaska. The first goal of this research was to evaluate appearance and behavior of Spruce Grouse in a taxonomic context. The second goal was to address the potential impacts of climate change on Spruce Grouse populations. The appearance and behavior of the Franklin’s Spruce Grouse (F. c. franklinii) in Washington and adjacent states and provinces is different when compared with the Canada Spruce Grouse (F. c. canadensis) occupying most of the range north and east of the Franklin’s Spruce Grouse. These observations are consistent with recommendations that the Franklin’s Spruce Grouse may be a distinct species. This is particularly important now that Spruce Grouse in western North America are being adversely impacted by climate change, directly through the damage caused by bark beetles, and indirectly through increased wildfires and logging.

INTRODUCTION

For many years, miners took canaries in small cages into mines to serve as sentinels for impending danger, such as poisonous gas. In theory, the canaries would respond to toxic conditions earlier than the accompanying
miners, thereby alerting them to the danger. Of course, this only works if the miners are paying attention.

In the case of climate change, one of the most common sentinel species is the polar bear (*Ursus maritimus*). This is because climate change has been particularly dramatic in the Arctic and polar bears are adapted to life on and near sea ice. In the avian World, ptarmigan have received attention for similar reasons (Martin and Wiebe 2004). Rock (*Lagopus muta*) and Willow Ptarmigan (*L. lagopus*) are adapted to both Arctic and alpine tundra and White-tailed Ptarmigan (*L. Leucura*) is adapted to alpine tundra.

Climate change can include a variety of impacts including long-term changes in average temperature, average precipitation, and frequency and intensity of storms. Increases in temperature have been particularly dramatic in Arctic and alpine tundra, and these changes have had impacts on plant phenology and the timing of bird migration and nesting (Wann et al. 2016). In the case of Washington’s White-tailed Ptarmigan, concerns about these potential climate changes were documented in a petition to the U.S. Fish and Wildlife Service to have the ptarmigan federally listed as a threatened or endangered species (USFWS 2015).

One Washington species that has largely been ignored in discussions of climate change is the Spruce Grouse (*Falcipennis canadensis*). In contrast with ptarmigan, Spruce Grouse depend on montane forests in the western part of their North American range and boreal forests in the northern and eastern parts of the range. Although most areas of alpine tundra in Washington are protected as part of national parks or wilderness areas, Spruce Grouse habitat is often used commercially for timber harvest. Consequently, Spruce Grouse habitat is not only impacted by climate change, but also by management activities.

Spruce Grouse is one of seven grouse species in Washington. The taxonomy of Spruce Grouse is somewhat controversial and can be illustrated by their numerous name changes (Schroeder et al. 2020). For example, Washington’s Spruce Grouse was formerly known as the Franklin’s Grouse, which is now considered a subspecies, *Falcipennis canadensis franklinii* and the Canada Spruce Grouse (*F. c. canadensis*) was referred to as the Hudsonian Spruce Grouse (Aldrich and Duvall 1955). There is currently interest in renaming the two subspecies as distinct species (Gutiérrez et al. 2000, Potopov and Sale 2013), which would be a reversion to its past taxonomy. This situation is further complicated by the identification of a third subspecies in the Prince of Wales Island area of Alaska (*F. c. isleibi*, Dickerman and Gustafson 1996). Other subspecies are referenced in literature (Aldrich and Duvall 1955, Aldrich 1963, Boag and Schroeder 1991, Schroeder et al. 2020), but because these are not clearly distinguishable by appearance and behavior, they are all lumped together with *F. c. canadensis* for the purposes of this paper. The approximate dividing line between Franklin’s and Canada Spruce Grouse is central British Columbia through southwestern Alberta, with Franklin’s Spruce Grouse to the south and west of the line and Canada Spruce Grouse elsewhere.

Spruce Grouse in Washington often live in lodgepole pine (*Pinus contorta*)-dominated forest where other species of pine (*Pinus* spp.), spruce (*Picea* spp.), fir (*Abies* spp.), and larch (*Larix* spp.) may be present. These forests are often successional forests that are characterized by periodic
SPRUCE GROUSE AND CLIMATE CHANGE: CANARY IN THE COAL MINE?

wildfire; lodgepole pine is an early successional species that depends on fire for germination. It is also a species that has been dramatically impacted by mountain pine beetle (*Dendroctonus ponderosae*), a relationship directly tied to climate change (Logan et al. 2003, Carroll et al. 2004, Taylor and Carroll 2004, Aukema et al. 2008, Kurz et al. 2008, Raffa et al. 2008, Woods et al. 2010), and indirectly related to wildfire risk (Taylor and Carroll 2004, Jenkins et al. 2008) and logging activities. Because spruce grouse are relatively sedentary on a year-round basis (Schroeder 1985, 1986b; Harrison 2001; Barrowclough and Schroeder 2016), their ability to respond to vast areas of habitat alteration is limited. Spruce Grouse are gamebirds with a long history of interest; the Lewis and Clark Expedition was the first to provide written documentation of the Franklin’s spruce grouse in 1805 (Zwickel and Schroeder 2003).

The first goal of this research was to examine appearance and behavior of Spruce Grouse in the state of Washington and place them in a broader taxonomic context with adjacent populations in Oregon and British Columbia, but also Alberta and Alaska. The second goal was to describe the potential impacts of climate change on Spruce Grouse populations, particularly grouse endemic to Washington.

METHODS

During spring 1993–2020 (except for 2008, 2011, and 2018), I conducted or participated in surveys (repeated in multiple years) and searches for Spruce Grouse in Washington, Oregon, British Columbia, Alberta, and Alaska. Locations were selected to represent core areas as well as transitional locations between the Franklin’s and Canada Spruce Grouse subspecies (central British Columbia and southwestern Alberta). These surveys were focused on different objectives including assessment of occurrence, density, appearance, behavior, and genetics. Genetics was the focus of research led by Dr. George F. Barrowclough of the American Museum of Natural History (e.g., Barrowclough and Schroeder 2016) and will not be considered in this paper.

Most surveys were conducted during April, May, and early June with the aid of playbacks of a recording of a female Spruce Grouse territorial call (Schroeder and Boag 1989, Schroeder et al. 2020). These playbacks often elicit responses by males and females. A typical response by a male includes walking or flying toward the source of the playback and/or performing portions of their breeding display. Depending on the location of the survey, males typically perform flutter flights or both flutter flights and wing-claps (Schroeder and Boag 1989). The flutter flight is a deliberately loud flight that males perform while flying from the ground to a tree, from a tree to the ground, or from one tree to another tree (Schroeder et al. 2020). Males perform a typical wing-clap display by clapping their wings twice behind their back while flying from a tree to the ground. All Spruce Grouse males perform a flutter flight display, but only Franklin’s Spruce Grouse are known to perform wing-claps. Females tend to be less responsive than males, but when they do respond, they walk or fly toward the source of the playback and/or utter calls similar to the playback.
In addition to observations of breeding behavior, appearance was also examined for male Spruce Grouse and occasionally females. Key characteristics included the appearance of the tail feathers and upper tail coverts, which vary by subspecies (Figure 2, but also Dickerman and Gustafson 1996). Adult (hatched >1 year earlier) male Canada Spruce Grouse have black tail feathers with a light brown terminal band. Adult male Franklin’s Spruce Grouse lack the band. Because yearlings (hatched previous year) have substantial variability in the appearance of their tails (Schroeder et al. 2020), they were not considered in this assessment. Male Franklin’s Spruce Grouse also have bolder white on the upper tail coverts (Figure 2). Females display subspecific variation that is more subtle; terminal light mottled brown often appears on the underside of female Canada Spruce Grouse tail feathers. For the purposes of this research, female behavior, appearance, and abundance were not quantified.

An index of population abundance was obtained for Franklin’s Spruce Grouse at key locations in Washington and one in Alberta. Playbacks of a recording of a female Spruce Grouse territorial call were used at intervals of approximately 150 meters. This distance insured that most males within a surveyed area could hear the recording and have the opportunity to respond (Schroeder and Boag 1989). The reason why this technique is considered an index and not a census is that some males may be missed for various reasons. For example, males may respond, but remain undetected. This is a serious issue in areas where males do not perform the relatively loud wing-clap display. Variation in male and female behavior can also influence their responsiveness. For example, a male in close proximity to a female may be less likely to respond to a recording of a female in the distance, whereas a female may not respond if she is on a nest.

Most grouse that responded to playbacks in Washington were captured.
with the aid of a noosing pole (Zwickel and Bendell 1967, Schroeder 1986a) and banded with a unique combination of one colored anodized numbered aluminum band and 2 or 3 colored plastic bands. Up to two bands were placed on each leg to create a unique combination of colors. For research conducted at the Gorge Creek study area in southwestern Alberta in 2005, surveys were conducted at 25 of 31 study sites used in a 1984 study (Schroeder and Boag 1991). The 25 to 61 ha sites were originally chosen to represent a cross-section of forest types, but mostly a combination of lodgepole pine and spruce. The only exception is that birds were not banded in 2005, though 20 were captured to obtain blood samples for genetic research. Finally, Spruce Grouse occurrence and abundance was examined relative to indicators of climate change including insect-damaged trees, wildfire, and logging.

RESULTS

Spruce Grouse were detected on 31 different areas in western North America (Figure 3). There were many additional searched areas where grouse were not detected. There were substantial areas where males were unambiguously Canada or Franklin’s Spruce Grouse (Figure 3). Spruce Grouse north of the survey areas were most likely Canada Spruce Grouse and birds

Figure 3: Location of 31 survey areas for Spruce Grouse in Washington, Oregon, British Columbia, Alberta, and Alaska relative to the approximate distribution of spruce grouse (Schroeder et al. 2020). Areas that were unambiguously (behavior and appearance) Franklin’s Spruce Grouse are represented by red dots and areas that were Canada Spruce Grouse are represented by yellow dots. The purple dots are ambiguous and are addressed in the text.
to the south were most likely Franklin’s Spruce Grouse. A total of 557 different Spruce Grouse was observed including 366 males, 184 females, and 7 birds of unknown sex. Not all characteristics were observed for each bird.

Breeding behavior

Breeding behavior was considered for 321 males. Of the 20 males observed displaying in the range of Canada Spruce Grouse (Figure 3), all performed only flutter flights (no wing-claps). A broad area in central British Columbia, portions of southwestern Alberta, and southeastern Alaska was characterized by Spruce Grouse with ambiguous appearance and/or behavioral characteristics (purple dots on Figure 3), which is the primary reason why study areas were concentrated in those areas. Only 1 male was observed displaying at the Prince of Wales Island study area, but it was an unusual ground to ground display of a double wing-clap, as opposed to the ‘normal’ tree to ground display. Because this population has been identified as a distinct subspecies, this unusual behavior was not unexpected. The other unusual displays were observed at areas that could be considered transitional between Canada and Franklin’s Spruce Grouse. Six males at McLean Creek, 2 males at Sibbald Flat, 2 males at Thompson, and 3 males at Big Bar were observed performing a wing-clap display, but they only clapped their wings once as opposed the normal 2 claps observed in Franklin’s Spruce Grouse. One male at the Pinto Lake area performed a double wing-clap but performed it while flying between 2 trees (very unusual). The other 37 males observed displaying in ambiguous areas (Figure 3) performed only a flutter flight display. In contrast, 235 different males were observed performing a double wing-clap display in Franklin’s Spruce Grouse areas. Although 14 additional males were observed performing only flutter flights, this was not unexpected because the flutter flight is part of the normal display of all male Spruce Grouse.

Appearance

Tail appearance was considered for 308 males. A total of 28 males in the Canada Spruce Grouse areas had black tail feathers with a terminal band of brown (Figure 2). In areas with ambiguous males, 6 of 51 males had tails with a brown band (Bell II Lodge North, Williston, Tumbler Ridge, and Pinto Lake), while all the others had tails of mostly black. It was not unusual to have males at a single study area exhibit a mix of characteristics. For example, 2 of 5 males at Pinto Lake had tails more like Canada Spruce Grouse and the other males had tails like Franklin’s Spruce Grouse. All 229 males in the range of Franklin’s Spruce Grouse (Figure 3) had tails of mostly solid black (Figure 2).

The appearance of upper tail coverts was considered for 297 males. The 22 males in the range of Canada Spruce Grouse all had upper tail coverts with faint amounts of white (Figure 2). Nine of 47 males in ambiguous areas had faint amounts of white on their upper tail coverts whereas the other males had substantial amounts of white (Figure 2); the 9 males with faint amounts of white were observed at Prince of Wales Island, Pinto Lake, Tumbler Ridge, Bell II Lodge North, and Bell II Lodge South. All 228 males observed in the range of Franklin’s Spruce Grouse had substantial amounts of white on their upper tail coverts.
SPRUCE GROUSE AND CLIMATE CHANGE: CANARY IN THE COAL MINE?

Abundance

Between 1993 and 2003, periodic surveys were conducted for Spruce Grouse at the Cutthroat Lake and Tiffany study areas in north-central Washington. An attempt was made to record the number of different adult males at each area; all males detected were either identified from their band combination or captured and banded. The maximum number of males observed in a given year was 5 at the Cutthroat Lake area (~50 ha) and 43 at the Tiffany area (~700 ha). The Tiffany study area was relatively large and divided into 3 study sites: Roger Lake (25 males, ~450 ha); Tiffany Meadows (7 males, ~100 ha); Mutton Creek (11 males, ~150 ha). The majority of the Tiffany Meadows and Roger Lake sites burned during the ~71,000 ha Tripod Complex fire during 2006. In 2007–2020 (following the fire) the maximum number of males observed during any year was 0 at Tiffany Meadows, 2 at Roger Lake, and 5 at Mutton Creek (84% decline for the 3 sites combined). Although the Mutton Creek site was not burned, trees were cut in 2003 to create a ~16 ha fire line through the middle of the site in anticipation of the ~1,600 ha Isabel fire which stopped before reaching the study site. In contrast, the maximum number of males observed in the unburned Cutthroat Lake area was 4 (20% decline) during the same year interval.

In April and May 2005, surveys were conducted at 25 study sites at the Gorge Creek study area in southwestern Alberta (Figure 3). A total of 39 males was detected at 25 sites in 1984 and 35 males at the same sites in 2005 (10% decline). None of the sites had been impacted by wildfire, logging, or obvious bark beetle damage during the 21-year gap.

When all study areas were considered, birds that looked like Franklin’s Spruce Grouse tended to be in montane habitats. These forests were often dominated by lodgepole pine, but other species such as spruce, fir, and larch were often abundant. In contrast, birds that resembled Canada Spruce Grouse were typically found in lower elevation conifer forests, usually dominated by spruce. Observations at single study areas could illustrate the same tendency. For example, in the Williston study area (Figure 3), a male resembling a Canada Spruce Grouse was found in a flat area along Williston Lake at 777 m elevation while a male resembling a Franklin’s Spruce Grouse was found on the slope of a nearby mountain at 1,264 m elevation. The Pink Mountain study area, which is in the core Canada Spruce Grouse range, provided a different perspective on the same issue. All 12 Spruce Grouse observed on the study were in the lower elevation spruce habitat; no birds were observed in the montane pine forest higher up on the slope of Pink Mountain, despite searching.

DISCUSSION

Research on Spruce Grouse in Washington and surrounding states and provinces has shown that birds display substantial variation in appearance, behavior, and habitat. Although the genetic work is still pending, there is enough preliminary data to suggest that Spruce Grouse have some distinct characteristics that are worthy of conservation efforts. For example, males that perform the wing-clap display are only found in western Montana, northern Idaho, northeastern Oregon, Washington, southwestern Alberta,
southern British Columbia, and southeastern Alaska. Because the birds in southeastern Alaska are considered to be a distinct subspecies (Dickerman and Gustafson 1996), they may be at significant risk. The remaining Spruce Grouse with the wing-clap display fit the classical definition of a Franklin’s Spruce Grouse and may actually be a distinct species (Gutiérrez et al. 2000, Potopov and Sale 2013).

The Canada Spruce Grouse has an extremely large range across most of North America’s boreal forest. The surprising part of this research was not where Canada Spruce Grouse were found, but how large the area of ambiguity was in central British Columbia. There were numerous study areas where birds had a mixture of characteristics, especially with males displaying the outward appearance of a Franklin’s Spruce Grouse, but with no wing-clap display. The reason for this broad area of ambiguity is unknown but is unlikely to be only related to hybridization (Barrowclough and Schroeder 2016).

Although climate change is likely to impact Spruce Grouse throughout their range, I focused on the range of the Franklin’s Spruce Grouse, including birds in the areas of ambiguity. One reason for doing this is that the Franklin’s Spruce Grouse occupies an area that is the farthest south of any Spruce Grouse. Past research on birds suggests that climate change can pressure birds to move their ranges northward while losing some of their distribution in the south (Hitch and Leberg 2007). In addition, Washington and the southern half of British Columbia have been dramatically impacted by issues directly and indirectly related to climate change including bark beetles, wildfire, and clear-cutting to address actual and potential beetle damage (Haughian et al. 2012).

Western spruce budworm (Choristoneura freemani) and mountain pine beetle have impacted vast areas in Washington and British Columbia (Logan et al. 2003, Taylor and Carroll 2004, Woods et al. 2010), likely a result of warmer winters which reduce the annual die-off of bark beetles (Carroll et al. 2004, Régnière and Bentz 2007, Stahl et al. 2006). These impacts have been dramatic and have had both direct and indirect impacts on the forest. The direct impact is primarily the deaths of vast expanses of trees (Wellstead et al. 2006). For example, the area impacted by the mountain pine beetle increased from about 160,000 ha in 1999 to about 18,000,000 ha currently (https://www.nrcan.gc.ca/forests/fire-insects-disturbances/top-insects/13397). The increased area was partly related to the intensity of infection within the original beetle distribution (largely overlapping the Franklin’s Spruce Grouse and areas of ambiguity, Figure 3), but also to the expansion of the beetle range into higher elevations and northward and eastward into the boreal forest of northern British Columbia and Alberta (Carroll et al. 2004, Safranyik et al. 2010, Cullingham et al. 2011, Alfaro et al. 2015, Dhar et al. 2016).

One indirect impact of beetle damage is the increased risk of devastating wildfires due to the prevalence of dead and dying trees (Figure 4, Haughian et al. 2012). The largest wildfire season in British Columbia history was in 2018, burning ~1,354,000 ha, mostly in northern British Columbia (https://www2.gov.bc.ca/gov/content/safety/wildfire-status/about-bcws/wildfire-statistics). The second worst season in history was in 2017, burning ~1,216,000 ha in the heart of Franklin’s Spruce Grouse habitat or in areas
SPRUCE GROUSE AND CLIMATE CHANGE: CANARY IN THE COAL MINE?

Figure 4. Baldy Mountain and Roger Lake in Okanogan County, Washington in 2001 (before disease and wildfire), 2004 (after insect damage became pervasive – see reddish tint in trees on ridge), 2012 (after the 2006 Tripod Complex Fire), and 2020. The 2006 Tripod Complex Fire burned at least 95% of the trees shown in the latter two photos. Although some of the differences in appearance can be explained by season, the primary difference between 2012 and 2020 is that many of the trees killed in the wildfire had fallen down. (Photos by © Michael Schroeder)

of ambiguity. The 2017 wildfires burned substantial areas damaged or killed by mountain pine beetle and were likely related to climate change (Kirchmeier-Young et al. 2019). Previous research in Yellowstone National Park indicated that the beetle-fire relationship may be complicated by the stage of beetle damage (Lynch et al. 2006, Page and Jenkins 2007) and past fire suppression (Parker et al. 2006). Another indirect impact of climate change has been with increases in logging, which is often used as a management tool to remove bark beetle-damaged trees, particularly in British Columbia.

Examinations of spruce grouse abundance illustrated the impact of the Tripod Complex wildfire on populations that had previously been monitored. Although it is not clear that the bark beetle damage near the Roger Lake study site at the Tiffany study area increased the likelihood of the area being burned by the wildfire (Figure 4), the result for Spruce Grouse was a dramatic decline. Wildfire and logging activities have had a dramatic impact throughout the range of Franklin’s Spruce Grouse, including the ambiguous areas in central British Columbia. Although it was difficult to quantify, the vast areas of insect damage, wildfire, and clearcutting made it difficult to find intact areas with Spruce Grouse. There were 15 study areas in British Columbia (Figure 3), but there were at least twice as many areas where searches for Spruce Grouse failed.
The bark beetle, wildfire, and logging impacts have had a cumulative impact on the range of Franklin’s spruce grouse. Research on Spruce Grouse in British Columbia showed that grouse have lower survival in the fragmented forests left behind following both beetle damage and clearcuts (Harrison 2001). Harrison’s research was done in and around the ~40,000 ha Bowron clearcut southeast of Prince George (Figure 5) which was one of the study areas that was used in this research. Harrison captured 302 Spruce Grouse, and all had the appearance of Franklin’s Spruce Grouse and none of the adult males was observed performing a wing-clap display. This issue of fragmentation also is important in Washington, because wildfires have impacted most of the Spruce Grouse habitat directly through habitat loss and indirectly through habitat fragmentation.

It is possible that many of the observed declines with spruce grouse will be reversed when the forests are re-established. However, because of climate change, it is possible that a portion of these forests will be replaced by slightly different habitat types that are less likely to support Spruce Grouse. For example, drier lodgepole pine forests may be less likely to support the shrub and herbaceous understory necessary for successfully nesting Spruce Grouse (Keppie and Herzog 1978). It is also possible that lodgepole pine may be replaced with Ponderosa pine (Pinus ponderosa) which is better adapted to a warmer and drier climate, but unlikely to support Spruce Grouse. Another issue is that increases in bark beetle damage may produce a shorter fire-return interval which subsequently would reduce the suitability of forests for Spruce Grouse. In any case, the Spruce Grouse makes an excellent sentinel species for monitoring the impacts of climate change in Washington.

Figure 5: Left photo shows a portion of 40,000 ha Bowron clearcut adjacent to Bowron River, southeast of Prince George in 1998. Right photo shows bark beetle damage on shore of Unna Lake in Bowron Lake Provincial Park in 2005. The provincial park is a protected area south of the Bowron clearcut. (Photos by © Michael Schroeder)
SPRUCE GROUSE AND CLIMATE CHANGE: CANARY IN THE COAL MINE?

ACKNOWLEDGEMENTS

The majority of this research was done with Dr. Fred C. Zwickel, Dr. David A. Boag, Dr. Siegfried Klaus, Dr. Jochen Wiesner, Dr. Wolfgang Scherzinger, Dale L. Rabe, Dr. George F. Barrowclough, and Jonas E. Lai. Dr. Barrowclough provided most of support for work done outside of Washington. Dr. Boag provided support for the work at the Gorge Creek study area in southwestern Alberta. Mr. Rabe provided support for the work on Prince of Wales Island. I was supported by the Washington Department of Fish and Wildlife and Pitman-Robertson funds while working in Washington. None of this work could have been done without the support, and sometimes fieldwork, of Leslie A. Robb. Dr. Karen E. Hodges and Derek Stinson provided helpful review and comments. All of the photos are mine.

REFERENCES

SPRUCE GROUSE AND CLIMATE CHANGE: CANARY IN THE COAL MINE?

TEMPERATURE CHARACTERISTICS OF A VAUX’S SWIFT CHIMNEY ROOST IN MONROE, WA

DREW SCHWITTERS, Audubon Vaux’s Happening, 16432 2nd Ave SE, Bothell WA; drew.schwitters@outlook.com. WOS Member.

LARRY SCHWITTERS, Audubon Vaux’s Happening, 1745 Brookside Dr. SE, Issaquah, WA 98027 leschwitters@me.com. WOS Member.

Figure 1: Vaux’s Swifts at the chimney entrance. (Photo by © Bill Lider).
TEMPERATURE CHARACTERISTICS OF A VAUX’S SWIFT CHIMNEY ROOST

INTRODUCTION

The Vaux’s Swift, *Chaetura vauxi*, is a gregarious neotropical migrant with a breeding range spanning the highlands of southern Alaska to central California. The swifts perform two major annual migration events to and from Central America where they winter, spending the entirety either flying or resting in roost sites along the western United States (AOU 1998, Schwitters et al 2020). During migration, this species exhibits communal roosting behavior in groups ranging from hundreds to tens of thousands (Schwitters et al 2020). Benefits of communal roosting include protection from predators, thermoregulation, population regulation, and feeding efficiency (Eiserer 1984). Because of their large surface area to volume ratio and high metabolic rate characteristic of small birds (Rezende 2001), thermoregulation is likely to be among the most important of these benefits (Schwitters et al 2020). Lower temperatures recorded at sunset are often predictive of high roost occupancy among Vaux’s Swifts and closely related Chimney Swifts (*Chaetura pelagica*) during migration events, further suggesting the importance of roosts as buffers from extreme temperatures (Roux et al 2019, Schwitters et al 2020).

The majority of known Vaux’s Swift roosting sites are unlined brick chimneys constructed prior to 1940, which allows the swifts to cling to the interior. This type of roosting site is a substitution for old growth snags, which served as primary roosting sites prior to the disappearance of most old growth stands in the western United States (Finley & Finley 1924, Stager 1965, Bull & Hohman 1993, Bull 2003). Many of these chimneys currently used as roosts and similar constructed roost sites have increased levels of risk and may not continue to be used due to factors including demolition, private land transaction, human exclusion, seismic activity, and increasing predator activity (Schwitters et al 2020). This is alarming due to the aforementioned importance of these roosts.

In order to determine how important and how effective these chimney roosts might be in assisting thermoregulation, the authors placed data loggers inside and around a well-known roosting site in the chimney of the Wagner Elementary School in Monroe, Washington. Once scheduled for demolition, Vaux’s Happening and the Pilchuck Audubon Society were awarded a grant from Washington State in 2009 to seismically retrofit the chimney to preserve the roost, which now plays an important role in the community and for migrating swifts. During the northbound spring migration of 2012, data loggers recorded the difference in air temperatures between inside the chimney and the outside air temperatures both with and without roosting swifts. These data were used to determine how air temperatures inside and outside the chimney roost differ, how various amounts of roosting swifts affect the air temperature inside the chimney, and to what degree ambient air temperatures influence numbers of roosting swifts during migration.

STUDY AREA AND METHODS

Two LogTag Trix-16 data loggers were placed inside the inactive Wagner Elementary School chimney in Monroe, WA. The chimney measures 1.2
meters in width by 1.2 meters in length at the opening and rises 9.1 meters from the flat roof of the school. One logger was suspended 1 meter below the chimney opening and the second was suspended 5 meters below the opening. A third logger was attached to the outside of the brick structure to measure outside air temperature. It was placed 2 meters above the school roof and located on the west side of the chimney. Data were collected from 10 Apr 2012 to 17 June 2012, with a small break in collection on 9 May 2012 for data recovery due to storage concerns. This resulted in 67 days of 24-hour collection. These data were analyzed to determine how the presence of varying amounts of swifts impacted the interior temperatures. Each day was classified by the number of roosting swifts. Days with no swifts present were used as a control group, and compared with days with up to 1,000 swifts, days with 1,001 to 5,000 swifts, and days over 5,000 swifts. These classifications were chosen to ensure that each class had several observations and followed common estimates of swift presence in roosts (many volunteers providing quick estimates instead of counts will report numbers as around these benchmarks).

RESULTS

On days with no swifts present (n=18), air temperatures inside the chimney at 1 and 5 meters were roughly equivalent in temperature and behavior and remained relatively constant throughout the day, changing by an average of less than 4.17°C each day (Figure 2). Temperatures in the chimney were warmer than the outside temperature from approximately sunset to sunrise. During the coldest nocturnal period, the temperature 1 meter inside the chimney was an average of 7.32°C warmer than outside, while the temperature 5 meters inside the chimney was an average of 8.33°C warmer than outside (Figure 3).

![Figure 2. Average temperatures at each time of day outside and at 1 and 5 meters inside the Wagner Elementary School chimney in Monroe, WA, for all days with no roosting swifts during the 2012 northbound migration (n=18).]
TEMPERATURE CHARACTERISTICS OF A VAUX’S SWIFT CHIMNEY ROOST

On days with 1-1,000 swifts present (n=30), air temperatures inside the chimney at 1 and 5 meters displayed similar thermal profiles, although the temperature at 5 meters was higher (by approximately 1.72°C) than the temperature at 1 meter while the swifts were roosting during the night (Figure 4). Temperatures inside the chimney were less constant than on days with no swifts present, changing by an average of 4.72°C throughout each day. Temperatures were also warmer inside the chimney from approximately sunset to sunrise, although they were warmer than on days with no swifts present.

Figure 3: Average differences from the average outside temperature (°C) at 1 and 5 meters inside the Wagner Elementary School chimney roost site for all times of the day with various amounts of roosting swifts during the 2012 northbound migration.

On days with 1-1,000 swifts present (n=30), air temperatures inside the chimney at 1 and 5 meters displayed similar thermal profiles, although the temperature at 5 meters was higher (by approximately 1.72°C) than the temperature at 1 meter while the swifts were roosting during the night (Figure 4). Temperatures inside the chimney were less constant than on days with no swifts present, changing by an average of 4.72°C throughout each day. Temperatures were also warmer inside the chimney from approximately sunset to sunrise, although they were warmer than on days with no swifts present.

Figure 4: Average temperatures at each time of day outside and at 1 and 5 meters inside the Wagner Elementary School chimney in Monroe, WA, for all days with 1-1,000 roosting swifts during the 2012 northbound migration (n=30).
The inside of the chimney also remained warmer for a longer period after sunrise than on days with no swifts. During the coldest nocturnal period, the temperature 1 meter inside the chimney was an average of 9.04°C warmer than outside, while the temperature 5 meters inside the chimney was an average of 10.41°C warmer than outside (Figure 3). These temperatures are 1.72°C and 2.08°C warmer at 1 and 5 meters, respectively, than the average difference observed on nights without roosting swifts.

For days with 1,001 to 5,000 swifts (n=12), air temperatures inside the chimney at 1 and 5 meters again displayed similarly shaped daily thermal profiles, although the air was significantly warmer (by approximately 3.28°C) at 5 meters while the swifts were roosting at night (Figure 5). Inside the chimney, temperatures changed by an average of 6.85°C each day. Temperatures inside the chimney were again warmer than the outside air from sunset to sunrise and remained warmer for longer after sunset than on days with no swifts. During the coldest time of the night, the temperature 1 meter inside the chimney was an average of 9.38°C warmer than outside, while the temperature 5 meters inside the chimney was an average of 13.63°C warmer than outside (Figure 3). These temperatures are 2.06°C and 5.29°C warmer at 1 and 5 meters, respectively, than the average difference observed on nights without roosting swifts.

For days with over 5,000 swifts (n=5), air temperatures inside the chimney at 1 and 5 meters again displayed similarly shaped daily thermal profiles, although the air was significantly warmer (by approximately 3.28°C) at 5 meters while the swifts were roosting at night (Figure 6). Inside the chimney, temperatures changed by an average of 2.68°C each day. Temperatures inside the chimney were warmer than the outside air for the entire day at 5 meters and were colder than the outside air for only two hours in the afternoon at 1 meter. At the coldest part of the night, the temperature 1 meter
inside the chimney was an average of 5.86°C warmer than outside, while the temperature 5 meters inside the chimney was an average of 10.46°C warmer than outside (Figure 3). These temperatures are 1.47°C cooler and 2.12°C warmer at 1 and 5 meters, respectively, than the average difference observed on nights without roosting swifts. Despite the average difference in temperature on nights with over 5,000 roosting swifts at 1 meter inside the chimney being slightly less than the average difference in temperature with no swifts present, the absolute temperature remained higher for all days for which data were recorded.

In addition to temperature data collected, each night observers counted the number of swifts entering the chimney along with numerous environmental variables including weather conditions (rain, wind, fog, etc.), temperature at sunset, predator presence (number, species, and behavior for each predator type), and cloud cover (estimated percent of coverage). The number of swifts roosting in the chimney for any given night was most heavily influenced by the temperature near sunset, with an R^2 value of 0.432 (Figure 7).

DISCUSSION

Results suggest that chimney roosts provide an important opportunity for roosting swifts to conserve energy by remaining well above ambient air temperatures throughout all nights for which temperatures were recorded. During migration, when it is most important for Vaux’s Swifts to conserve energy, this nighttime insulation is critical for survival as it is for many species (Kendeigh 1961, Eiserer 1984, Walsberg 1986, Le Roux et al 2019). Even without any roosting swifts, interior roost temperatures were an average of 7.33°C warmer than the lowest average outside air temperatures. With larger numbers of swifts present, this average difference increased with roost temperatures up to an average of 13.63°C warmer than the lowest aver-
age outside air temperatures. Regardless of occupancy, roost temperatures remained cooler during the day and warmer at night. This suggests that brick chimney roosts can act as both buffers from extreme heat and aid roosting swifts in thermoregulation. Previous research has demonstrated that roosting in insulated areas has an advantage that increases in extent with greater drops in air temperature (Kendeigh 1961). Since basal and thermostatic energy demands account for roughly 40 – 60% of energy expenditures by many birds (Walsberg 1986), it is reasonable to assume that during cold nights the presence of a large roost with insulating abilities plays a critical role in temperature regulation and energy conservation for Vaux’s Swifts. This observation is bolstered by higher observed numbers of swifts roosting on colder nights. Further, other methods of shelter potentially available to Vaux’s Swifts such as tree trunks, nest boxes and wood stacks are likely less efficient alternatives (Gruebler et al 2014), underscoring the need to preserve at-risk roost sites like the Wagner Elementary chimney.

The data provide additional insights beyond the obvious thermal benefits provided by chimney roosts. By examining the behavior of air temperatures inside the chimney among the 4 classifications of swift occupancy, several trends become apparent. First, the largest numbers of swifts appeared on nights with the greatest difference between average minimum temperatures inside and outside the roost. For all days with the highest occupancy classification, over 5,000 roosting swifts, average interior roost temperatures were higher than average exterior temperatures for nearly the entire 24-hour cycle. Second, greater numbers of swifts present appear to have a warming effect via metabolic heating on interior air temperatures. This is suggested by the presence of a higher rate of temperature increase for 1 m and 5 m
inside the chimney around sunset with 1,001 – 5,000 roosting swifts, as seen in Figure 5. This sunset period of higher temperature increase is absent in days with no swifts and in days with up to 1,000 swifts roosting, suggesting that the effect only occurs with sufficient numbers of roosting birds.

Key takeaways from temperature logs include evidence for the effectiveness of chimney roosts for energy conservation, strong correlation between temperatures near sunset and the number of swifts occupying the roost, and the possibility of swifts contributing to interior temperatures via metabolic activity. This evidence can be used in justifying the preservation of future endangered roost sites. However, there are several recommendations for further study. This study was conducted during a spring migration and was concerned primarily with the greater number of roosting swifts as temperatures decreased at night. Outside temperatures rarely rose above 27°C, so extreme warm air conditions were not observed during the study period. A similar study conducted during the summer migration may shed better insight into how well this roost can act as a buffer from warm temperatures. Migration timing and the arrival of the majority of migrating individuals likely also has a pronounced effect on the number of roosting swifts observed each night, and it is not immediately apparent as to the best method for accounting for this phenomenon when attempting to determine how great the effect of temperature is on the number of nightly roosters.

ACKNOWLEDGEMENTS

The authors thank Ed Swan for assisting with the publication process and to Corey VanStratt for providing peer review. For their role in approving and supporting our studies, we thank Monroe Public School District Superintendent Dr. Ken Hoover, Assistant Superintendent John Mannix, and Wagner Elementary School Principal Robin Fitch. We also thank Audubon Vaux’s Happening Steering Committee and devoted outside observers Dianne MacRae, William Kaufman, Judy Allies, Cathy Clark, Neil Zimmerman, Sue Libow, Richard Dubois, Ann Dubois, Cindy Easterson, Jim Carr, Linda Cline, Carolyn Vigos, Connie Young, Paula Duncan, Mike Blackbird, Paulette Hunter, Susie Schaefer, Eileen Hambleton, Jeff Hambleton, Marina Skumanich, Jim Rettig, Tim Manns, Kathleen Snyder, Irene Billa, Carolyn Lacy, Leora Schwitter and Chad Schwitter. For their help in making this project a reality, we thank WDFW ALEA Program Grants Manager Josh Nicholas, and WDFW employees Gretchen Blatz and Charles Gibilisco. Finally, for camera assistance we thank Phil Turner of Olympia Systems.

LITERATURE CITED

GREAT EGRET EATS EARTHWORMS

DENNIS PAULSON, 1724 NE 98 St., Seattle, WA 98115; dennispaulson@comcast.net. WOS member.

GREGG THOMPSON, 2617 NE 195th Ln E9, Shoreline, WA 98155; greggthompson4321@gmail.com. WOS member.

Figure 1: Great Egret eating nothing but earthworms Rekdal Road on Camano Island, Island County, Washington, on 26 January 2021. (Photo by © Gregg Thompson.)

In *Birds of the World*, there is a lengthy account of the diet of the Great Egret, *Ardea alba*, a bird species distributed worldwide and much studied (McCrimmon et al 2020). Fish predominate in the diet, but crustaceans are also fairly common prey, both of these groups in fresh and salt water. The breadth of prey is impressive, including marine polychaete worms, isopods, spiders, a great variety of insects, frogs, tadpoles, lizards, snakes, and even small mammals. It is relatively easy to see egrets successfully hunting voles in the grasslands at Ridgefield National Wildlife Refuge. Even small birds have been reported as prey.

Thus, both of us were surprised when Gregg photographed a Great Egret near the upper end of Rekdal Road on Camano Island, Island County, Washington, on 26 January 2021 that at the time was eating nothing but earthworms (Annelida, Oligochaeta, Lumbricidae). He spent about a half hour (11:30-12:00) watching the bird, and during that time it captured 8-10 worms. Among the successful captures, the bird appeared to miss on some
of its attempts or came up with something too small to see. But every item that was identifiable was an earthworm.

The worms varied in length from around 9-13 cm when contracted (much longer when stretched out), estimated by comparing them with the average bill length of Great Egrets of about 11 cm. There are many species of earthworms in the Pacific Northwest, both native and introduced, although most of them are smaller than these worms. From their large size, they may have been the introduced “nightcrawler” so commonly used as fishing bait, *Lumbricus terrestris*.

Gregg returned at 15:00 on 3 February to find the egret visible in the same place, again hunting worms. During one interval, it captured five worms in seven minutes.

Great Egrets are quite uncommon north of Puget Sound, and this unusual feeding habit may have facilitated the ability of the egret to survive at this high latitude. It was known to have been present in the same area since at least 14 December 2020 (eBird records).

REFERENCES

THE COOPER’S HAWK: HISTORY AND CURRENT STATUS IN WASHINGTON

Figure 1: Close-up of a second-year female. Note orange eye. A hatch-year bird will have a yellow eye. Many urban females nest at 1 year old, while still in juvenile plumage. (Photo by © Jeremiah Holt.)

We begin with the colorful Birds of Washington account on the Cooper’s Hawk (Figure 1) by William L. Dawson (1909). “It is hard for us, daffy bird-cranks, who go into a trance at the sight of a feather, to pass sentence of death upon any bird; but since we have so often said “Let be! Let be!” when the hand of the gunner was raised against the Hawk (often for no better reason than that it was a Hawk and might steal chickens), we will let the law take its course in the case of this culprit.”

By the 1930s, the prevailing attitude on the Cooper’s Hawk had not changed. Bent (1937) wrote: “If the sharp-shinned hawk is a blood-thirsty villain, this larger edition of feathered ferocity is a worse villain, for its greater size and strength enable it to do more damage.”
Jewett, et al. (1953), in Birds of Washington State, continued the bad press for the much-maligned Cooper’s Hawk. “From man’s point of view, the Cooper’s Hawk has little to recommend it. It is a relentless tyrant and killer of small birds, and since practically all those killed are beneficial species, the hawk must be classed as an avian outlaw.”

For many years, Cooper’s Hawks in the U.S. were shot on sight as “chicken hawks.” At least until the early 20th century, they were also shot for sport, which led to the founding of Hawk Mountain Sanctuary in Pennsylvania in 1934 (Broun 1949). Centuries of persecution likely contributed to the shy and secretive behavior of the species noted in many field guides.

Changing attitudes toward raptors and restrictions on discharging firearms in towns have greatly reduced, but not completely eliminated, the shooting of hawks. Legal protection finally arrived in 1972, when raptors were added to the Migratory Bird Treaty Act. Rehabilitation of the image of the Cooper’s Hawk was still slow to change. It took generations of urbanites, removed from the rural reality of Cooper’s Hawk predation on barnyard chickens, to view raptor predation on common urban species (e.g., rock pigeons) more positively as a special glimpse into the workings of the natural world.

Most recently, a new generation of urbanites began keeping backyard free-range chickens and are re-learning an old lesson about the importance of chicken coops. I have received multiple complaints from irate chicken owners about a banded Cooper’s Hawk terrorizing their chickens, including one asking if I would trap and relocate “my” Cooper’s Hawk (Figure 2).

![Figure 2: Adult Cooper’s Hawk trying to find a way into a chicken coop. (Photo by © Jack Kizer.)](image)

RURAL WILDLANDS STATUS

Jewett et al. (1953) listed the Cooper’s Hawk as a “Summer resident, breeding throughout the state, a few in western Washington.”

Smith et al. (1997) modeled appropriate habitat in Washington based on nest detections detailed in the Breeding Bird Atlas (BBA), writing that
“...the BBA data include surprisingly few Cooper’s Hawk records. There are probably more Cooper’s Hawks breeding in Washington than the BBA data suggest, as this species is reclusive and easily overlooked during the breeding season.”

Bosakowski (1997) conducted structured point-count surveys for breeding birds in a commercial forest (21,600 hectares, the size of Seattle) in eastern Lewis County on the western slopes of the Cascades. 583 point counts over two years yielded a single Cooper’s Hawk detection.

Steven Desimone, writing the Cooper’s Hawk account in *Birds of Washington* (Wahl et al., 2005) summarized its current status as “…an uncommon to rare but regular breeder across forested areas of the state... Nests typically in mid-aged, mature or older conifer or deciduous habitat in areas dominated by Douglas fir, western hemlock, and big leaf maple in low to mid-elevation areas west of the Cascade crest, and fir-pine forests in eastern Washington….may nest in urban parks and suburban woodlots.”

Rullman & Marzluff (2014) conducted breeding season diurnal and nocturnal taped call surveys for hawks and owls at 21 sites along a gradient from urban to wildlands from Puget Sound to the Cascade foothills, examining how land cover and prey abundance influenced raptor presence. Cooper’s Hawks and Barred Owls were both detected in 16 of the 21 sites, exceeded only by Red-tailed Hawk (17). Cooper’s Hawks and Barred Owls were more likely to be detected in human-altered edge habitat between deciduous-mixed forest and light-intensity urban land cover.

Breeding Bird Survey data for Washington State for 2000-2019 continues to show low numbers of Cooper’s Hawk detections, with a slight annual upward trend over that period (Table 1).

<table>
<thead>
<tr>
<th>Year</th>
<th>N Detections</th>
<th>N Routes</th>
<th>Detections/Route</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>4</td>
<td>67</td>
<td>.060</td>
</tr>
<tr>
<td>2001</td>
<td>1</td>
<td>74</td>
<td>.014</td>
</tr>
<tr>
<td>2002</td>
<td>2</td>
<td>66</td>
<td>.030</td>
</tr>
<tr>
<td>2003</td>
<td>3</td>
<td>69</td>
<td>.043</td>
</tr>
<tr>
<td>2004</td>
<td>9</td>
<td>73</td>
<td>.123</td>
</tr>
<tr>
<td>2005</td>
<td>3</td>
<td>75</td>
<td>.040</td>
</tr>
<tr>
<td>2006</td>
<td>3</td>
<td>71</td>
<td>.042</td>
</tr>
<tr>
<td>2007</td>
<td>4</td>
<td>69</td>
<td>.058</td>
</tr>
<tr>
<td>2008</td>
<td>6</td>
<td>62</td>
<td>.097</td>
</tr>
<tr>
<td>2009</td>
<td>5</td>
<td>70</td>
<td>.071</td>
</tr>
<tr>
<td>2010</td>
<td>5</td>
<td>70</td>
<td>.071</td>
</tr>
<tr>
<td>2011</td>
<td>3</td>
<td>58</td>
<td>.052</td>
</tr>
<tr>
<td>2012</td>
<td>4</td>
<td>69</td>
<td>.058</td>
</tr>
<tr>
<td>2013</td>
<td>5</td>
<td>67</td>
<td>.075</td>
</tr>
<tr>
<td>2014</td>
<td>5</td>
<td>68</td>
<td>.073</td>
</tr>
<tr>
<td>2015</td>
<td>7</td>
<td>73</td>
<td>.095</td>
</tr>
<tr>
<td>2016</td>
<td>7</td>
<td>70</td>
<td>.100</td>
</tr>
<tr>
<td>2017</td>
<td>7</td>
<td>67</td>
<td>.104</td>
</tr>
<tr>
<td>2018</td>
<td>9</td>
<td>77</td>
<td>.117</td>
</tr>
<tr>
<td>2019</td>
<td>7</td>
<td>68</td>
<td>.102</td>
</tr>
</tbody>
</table>

Given the lack of more recently published surveys, we are left with a sense of uncertainty of the true density of nesting Cooper’s Hawks in the forested wildlands of Washington State. Breeding Bird Survey results indicate a rare nesting raptor, while Rullman & Marzluff’s (2014) study suggests that the Cooper’s Hawk is common in rural and mixed use/suburban habitats. Based on my urban experience, we significantly undercount them.

COOPER’S HAWK COURTSHIP AND SURVEY METHODS

In Seattle, returning adult pairs (Figure 3) typically start courtship calling at dawn by late February/early March. At first, these interactions are fleeting and easily missed. As the weeks pass, courtship vocalizations, copulations, and lengthy bouts of nest-building are frequent throughout the day, increasing the likelihood of detection by surveyors. New pairs, especially those involving one-year-old “first-timers,” often form later in the Spring (April to early May), when some veteran pairs are already on eggs.

Rosenfield et al. (1988) and Stewart et al. (1996) described survey techniques for detecting nesting Cooper’s Hawks in spring. Taped calls, used sparingly, can draw an irate territorial female out of hiding. Males may also respond to calls, but often approach silently and can be missed. Be aware that birds quickly habituate to calls and will ignore them. (“That’s from the Cornell website, I’m not falling for that again.”)
Spring courtship is most likely detected during “the golden hour,” 30 minutes before and after sunrise. Dawn surveys of simply listening for courtship vocalizations, as advocated by Stewart et al. (1996), are highly effective. In my experience in Seattle, far more nesting pairs are first located by hearing calls. However, one can at most visit only two or three adjacent nesting territories during the golden hour. Surveying large areas at dawn thus requires a small army of trained volunteers. In springtime surveys of the 84 square miles in Seattle, we always miss 3-5 nests. Our personal worst is a site visited seven times in March 2019 with no detections. A return visit in July yielded a pack of four food-begging juveniles. Cooper’s Hawks provide these lessons in humility with regularity.

In Seattle, we have recorded a nest territory re-occupancy rate of about 80%. Of these returning pairs, about 80% build a new nest and 20% reuse the previous year’s nest. This allows us to focus on identifying occupancy in known nesting territories in March, and to prospect for new pairs in likely gaps between known territories in April and May.

Once a nesting pair invests in eggs, they go silent, except for brief vocalizations during prey deliveries and incubation shift changes. They are apt to sit tight in response to a taped call.

Figure 4: The proliferation of quality cameras has yielded many photographs of banded hawks going about their lives. This juvenile male (read purple left V over 5) was photographed in a yard in NE Seattle in Sept. 2020. (Photo by © Peg Morgan)
Carlson et al. (2015) described the difficulties of surveying forests for nesting Cooper’s Hawks and Sharp-shinned Hawks. They studied a 3,398-hectare forest in the southern Sierra Nevada Mountains of California, less than 16% the size of Seattle. They established survey transects every 100m. At sites 200m apart along these transects they played Sharp-shinned and then Cooper’s Hawks calls. Winter conditions limited access in early spring, so they started surveys during the incubation phase, when the likelihood of detecting the hawks was much less. Such surveys face daunting logistics, especially in roadless tracts, but they have been undertaken for species of concern in Washington (e.g., Northern Goshawk; Finn et al. 2002). Currently the Cooper’s Hawk is designated by the Washington Department of Fish & Wildlife as State Protected, but it does not have an elevated level of protection (State Sensitive, Threatened, Endangered).

How else can we estimate the Cooper’s Hawks population health in Seattle? I have little faith in the accuracy of Christmas Bird Counts (CBC) for doing this. The difficulty of distinguishing between Sharp-shinned Hawk and Cooper’s Hawks is significant, even for veteran observers (see Hull et al. 2010 for a sobering discussion of inaccuracy of flight identification by experienced hawk watchers). CBC data might be mildly useful if Sharp-shinned and Cooper’s Hawk numbers were lumped together as a measure of winter Accipiter abundance.

eBird (eBird.org) has significant observer bias as well. For example, let’s examine eBird Cooper’s Hawks reports for May 2020 in Seattle. For simplicity we will assume all these reports are correct, although over the years I have received several reports of alleged Sharp-shinned Hawks sporting our male Cooper’s Hawk purple ID bands (males of both species are smaller than females). In May, most adult Cooper’s Hawks seen will be either members of incubating pairs or unpaired juveniles, mostly males, biding their time until breeding in another year. Most of these reports were from north Seattle, which at that time had 33 active Coop nests—compared to south Seattle, with 28 active nests. One could draw an erroneous conclusion that fewer Coop nests are in south Seattle, or are there fewer birders, or fewer sites regularly visited by birders, in south Seattle?

Still, if one looks at Coop sightings on eBird for May 2020 across Washington State, Coops appear to be “an uncommon to rare but regular breeder across forested areas of the state” (Desimone, in Wahl et al. 2005). There are also many more suburban and urban than rural sightings, which leads again to the question, are we measuring the location and density of Coops, or the location and density of birders?

MIGRATORY STATUS

Standardized observer counts of southbound fall raptor migrants have been compiled by Hawkwatch International for Washington and Oregon: Chelan Ridge in the north-central Cascades, (1999-2019), and Bonney Butte in north-central Oregon near Mt. Hood (1995-2019). I recognize that southbound migrants at these sites include birds from southern British Columbia.
Nonetheless, these counts may provide one measure of the population health of Cooper’s Hawks in Washington. Alas, the 2020 counts at both sites were cancelled because of the coronavirus pandemic. Over the years of these Hawkwatch counts, the Cooper’s Hawk numbers have held steady, second in abundance only to Sharp-shinned Hawks (Oleyar & Watson 2020).

Figure 5: Jack Bettesworth used blue VID bands on both sexes 2004-2011. This 11-year-old adult male (read blue right E over V) was trapped and released in March 2020. He was banded 10 years earlier. He has successfully nested for 10 consecutive years in the same Seattle park, producing 37 fledglings. (Photo by © Jake Burroughs)
The Falcon Research Group conducted a five-year study trapping and banding southbound migrants at Entiat Ridge, 10 miles northeast of Leavenworth, Washington (Anderson et al 2006). Of the 1,338 raptors banded, 256 (19%) were Cooper’s Hawks, again, a total exceeded only by Sharp-shinned Hawks (811, 61%).

Cooper’s Hawks in Seattle have largely abandoned migration, probably because of the mild winters and abundant prey. Similar behavioral changes have been reported in other urban areas, including Albuquerque, New Mexico (Millsap 2018). From 2012 to 2020 in Seattle, 21% (65 of 313) of the sightings of color-banded birds (Figures 4, 5 and 6) were seen in the winter months of November-February, a time of year when we are not out actively searching for them. Of those 313 reported band sightings, only one was seen further south than Tacoma: in Oakland, California. (“Do they migrate? One did.”)

HISTORIC URBAN STATUS

Nesting Cooper’s Hawks were probably extirpated from urbanizing towns in the Pacific Northwest by clear-cutting of the remaining old growth forest and by shooting them for raiding chickens. They perhaps nested in remnant densely wooded refugia, such as Schmitz Park or Seward Park in Seattle, or Point Defiance Park in Tacoma, but evidence is lacking. Dawson (1909) cited two nests in the Tacoma area as the only known nesting records for Washington.

Jewett et al. (1953) made no specific mention of urban nests. They did list a number of towns across Washington, but examination of the cited sources reveals a different story. For example, Jewett listed Bellingham, but
his source was Edson’s 1908 *Birds of Bellingham Bay*, which simply listed Cooper’s Hawks as “rare” with no location provided.

The earliest record of a Northwest urban nest I have found was noted in Victoria, British Columbia in the mid-1940s by falconer Frank Beebe (Andy Stewart, personal communication).

Falconer Richard “Butch” Olendorff found a Cooper’s Hawk nest in the extensive West Duwamish Greenbelt of West Seattle circa 1966-1968 (Bud Anderson, personal communication).

A successful nest was followed in Victoria in 1972, with an urban nesting population established there by the mid-1970s (Andy Stewart, personal communication).

Hunn (1982) noted that “Cooper’s has nested recently near Kent and on Vashon Island.” Hunn (2012) listed Cooper’s Hawks as nesting in Discovery Park (Seattle) and Wallace Swamp Creek Park (Kenmore).

RECENT URBAN STATUS

In 2004, Jack Bettesworth founded a long-term study of Seattle area Cooper’s Hawk nests. In the early years he studied the few known nests, then gradually expanded his spring search area to all of Seattle and beyond (e.g., Black River Natural Area, Shoreline). By 2011 he had documented 23 nesting attempts in Seattle, with 19 successful nests fledging 63 young. Our stringent criteria for fledging were to either observe the bird in powered flight, able to gain elevation, or to find them perched in a location impossible to reach by branching. Other studies use the number of branchers as a successful nest (e.g., Pericoli et al., 2020) or the number of nestlings that reached the advanced nestling stage (i.e., 18 days old) when the nest was visited to band the young (e.g., Stout et al. 2005).

In 2012 Martin Muller and I took over the Seattle study, with crucial help from Jack and his cadre of veteran volunteer observers. We have continued to see annual increases in nest numbers and productivity. In 2020 we documented 61 nest-building sites with 51 successful nests that fledged 191 youngsters.

Factors leading to urban colonization by Coops probably included recovery of the urban tree canopy, the banning of DDT and other pesticides, and a behavioral transition from “shy and secretive” to indifferent to all but the most egregious human activity near their nest sites (Figure 7). This change in their human tolerance allowed the Cooper’s Hawk population to exploit the high prey density of human-altered suburban and urban habitats (e.g., Marzluff 2014).

I am often asked, are there more urban nesting Cooper’s Hawks, or am I just getting better at finding them? The answer is both. The recent phenomenon of urban nesting Cooper’s Hawks has occurred throughout North America. The best documentation that this is a new colonization, and not simply the result of better detection, comes from Milwaukee, Wisconsin (Stout & Rosenfield 2010). Starting in 1988, Biologists there conducted annual structured route surveys for nesting Great-horned Owls and Red-
tailed Hawks. They detected the first Cooper’s Hawk nest in 1993 and documented the Coop’s subsequent colonization of the city, increasing to 55 occupied territories by 2008. Similar population expansions have been documented in Stevens Point, Wisconsin (studied by Bob Rosenfield et al.), Albuquerque, New Mexico (Brian Millsap et al.), Tucson, Arizona (Bill Mannan et al.), Victoria, British Columbia (Andy Stewart et al.) and Grand Forks, North Dakota (Tim Driscoll et al.).

In 2020, Seattle’s Cooper’s Hawks produced a healthy 3.75 fledglings per successful nest, with a nesting density of 1 nest per 1.37 square miles. But in previous years we have found nests as close as 330 meters apart. We are probably missing a few nests each year. Some greenbelts are not adequately searched because of no trails and chest-high blackberry. Noise pollution in greenbelts bordering I-5 and the Duwamish River makes courtship vocalizations impossible to hear. Others shelter large encampments, perhaps not the wisest places to be carrying expensive optics before dawn.

Figure 7: 2020 Montlake Fill nest. Low in an alder over Klickitat Lane. Not exactly a “shy and secretive” location. Fledged 4. (Photo by © Ed Deal)
Thus, the numbers we report for urban nesting density and productivity in Seattle should be considered minimum figures.

Cooper’s Hawks show a marked affinity for the Olmsted Brothers Park Plans developed in the early 1900s for the Seattle Parks system (https://seattleolmsted.org/). Since 2004 we have documented nesting in 52 of Seattle parks and greenbelts. In 2020, 40 of the 61 nests were on City of Seattle properties.

Cooper’s Hawks most commonly nest in Bigleaf Maples and Douglas Firs, but they will nest in any tree species that suits their fancy. Our list includes White Pine species, Pacific Madrone, Alder species, Cottonwood, Deodar Cedar, Blue Atlas Cedar, Western Red Cedar, Oak species, Sycamore, Norway Spruce, Chestnut species, Ponderosa Pine, Apache Pine, Beech, Dutch Elm, Hemlock, Sequoia, and Eucalyptus.

Figure 8: Do urban Cooper’s Hawks eat rats? (Photo by © Dan Reiff)

URBAN DIET

Dietary flexibility has been a keystone in the success of Cooper’s Hawks in various urban settings. In Tucson and Albuquerque, the abundant dove species are a staple. In Wisconsin, chipmunks. In a detailed Victoria, BC, study, introduced species (Starlings and House Sparrows) comprised 50% of the diet, with American Robins contributing another 35% (Cava et al. 2012). In Seattle, our qualitative impression is that the majority of prey is avian, but also regularly includes rats (Figure 8), rabbits (Figure 9), and the occasional inattentive grey squirrel.

PREDATION IMPACT ON PREY ABUNDANCE

A pioneering study of five Cooper’s Hawk nests on Lopez Island found an average of 9.1 prey deliveries per nest per day during the 5-week nestling period (Kennedy & Johnson 1986). The predation of several hundred prey
items per nest must impact the prey population. Won’t the nesting Cooper’s Hawks decimate the songbird population? Rullman (2012) addressed this oft-asked question. He studied 26 sites in the Seattle area between Puget Sound and the Cascade foothills, of which seven had active Coop nests and others served as controls.

In densely wooded study sites, Cooper’s Hawk predation reduced the numbers of Swainson’s Thrush, a dominant prey species. Likewise, in more developed study sites, predation reduced the dominance of American Robin, another common prey species. Rullman found some reduction in songbird productivity near a Coop nest but a slight protective effect seen closer to nests, probably because Coops drive other potential nest predators (crows, jays, and squirrels) out of their core territories. Songbird productivity was actually lower 300-500 meters from a Coop nest, likely due to predation by Cooper’s Hawks and also corvids and sciurids. This relative protection of songbirds that nest near Coop nests is similar to the protective effect that Black-chinned Hummingbirds receive from non-raptor nest predators by nesting close to an Accipiter nest (Greeley & Wethington 2009). However, in this case nesting close to a Coop nest requires payment of some “protection money”: passerines are protected from corvid and sciurid predation but suffer the price of some predation by Coops.

Figure 9: Do urban Cooper’s Hawks prey on the abundant rabbits? (Photo by © Martin Muller)

THREATS TO URBAN COOPER’S HAWKS

Collisions are the most common cause of urban Coop mortality. Since 2012 we have recorded 46 banded bird mortalities; 21 were documented window hits and 6 were hit by cars. Dead or dying Cooper’s Hawks are often found beneath windows, but others probably succumb to their injury over several hours and are found well away from a window (and are not
included in this tally) or are not found at all. Roth et al. (2002) examined museum skeletal collections for healed pectoral fractures. 26 of 115 (23%) Cooper’s Hawks had healed fractures. This indicates that collisions are both common and sometimes survivable.

The use of anticoagulant rodenticides (AR), or blood-thinning rat poisons, is widespread in urban Puget Sound. In 2020 we surveyed a 500-m circle around a Cooper’s Hawk nest in the University District and tallied 294 rat poison bait boxes. Urban Raptor Conservancy, in collaboration with PAWS Wildlife Center, is conducting the first study in Washington of AR exposure in dead raptors. In our study, the first 14 Cooper’s Hawk tested all were positive for ARs, and 13 were positive for two or more different ARs, indicating that rats are a regular part of their diet. Unfortunately, the nastier ARs (e.g., Bromadialone, Brodifacoum) lodge in the liver and have long half-lives. This means that a raptor can accumulate a lethal dose from several sub-lethal doses (https://urbanraptorconservancy.org/news/).

Rodenticides are not the only poisons to threaten Cooper’s Hawks. Brogan et al. (2017) analyzed blood samples from urban nesting adult and juvenile Cooper’s Hawks in nearby Vancouver, BC, for persistent organic compounds, including PCBs, PBDEs (flame retardants), and the legacy insecticides dieldrin and DDE. Despite being banned for over 40 years, the DDT metabolite DDE was above the threshold for eggshell thinning in three of 21 adults.

Infectious diseases in Coops are uncommon but do occur. For example, avian trichomoniasis, or frounce, is a protozoan carried by pigeons and doves (“the pigeon’s revenge”). Although frounce is infrequent in the Northwest, it is a much more common source of mortality, especially in nestlings, in more southern urban populations that prey heavily on dove species, such as Tucson (Boal 1997; Boal & Mannan 1999). By contrast, in northern regions, Rosenfield et al. (2002) tested for frounce in 35 nestlings in Victoria, BC, and found three positive tests and no peri-fledge mortalities. Rosenfield et al. also examined 43 fledglings in Wisconsin and 32 in North Dakota; all were negative.

The huge urban crow population is usually just a perpetual nuisance to Cooper’s Hawks. Crow-Coop aerial dogfights are common, especially during the nesting season as Coops struggle to enforce the no-fly zone around their nests. However, in June 2016 things took an ominous turn. In the Victory Heights neighborhood, a Cooper’s Hawk was seen killing a fledgling crow. Later that morning, a swirling mob of at least 50 crows massed in the trees close to the Coop nest tree. A witness then described a mass attack by the crows on the Coop nest. Waves of crows overpowered and drove off the female Coop, while another group assaulted the nest, taking one chick. The 7- to 10-day-old Coop chick was carried across the street and dropped from a considerable height, and it died. After the attack, the murder of crows dispersed, having exacted their revenge. One witness retrieved the dead chick, which was taken to the Burke Museum. To our surprise, the nest still fledged three young. This might help explain why we have only seen two instances of crows as prey over 9 years and thousands of site visits.

The expanding urban population of Barred Owls favors the same greenspaces as Cooper’s Hawks for nesting. How these two predators partition their habitat is poorly understood. In two instances, we have seen the arrival
of Barred Owls result in the eviction of a pair of territorial Cooper’s Hawks. In both cases the hawks relocated several hundred meters from densely wooded riparian corridors to sparsely wooded neighborhoods to nest. In Woodland Park in 2017, we observed a Barred Owl nest 48.6 meters from a Cooper’s Hawk nest. The relationship was tense, with frequent hostile interactions and vocalizations, but both nests succeeded, the Barred Owls fledging three and the Cooper’s Hawks four. The ornithological literature contains a report of a Barred Owl killing a Cooper’s Hawk (Hertzel 2003) and one of a Cooper’s Hawk killing a Barred Owl (Stirling 2011).

In 2015 we found one urban nest that was later hit by an unknown predator; the four one-week old chicks and the adults all disappeared. I surveyed the area the next spring for a return of the adults. A single play of a Cooper’s Hawk call near the predated nest drew in a Barred Owl, who I suspect was the culprit. That nesting territory sat vacant for the next three years, until 2019.

Predation on Coops by other raptors is rare. In 2016, a Cooper’s Hawk nest on the grounds of Woodland Park Zoo failed shortly after hatching. At the time the female abandoned, adult male Cooper’s Hawk feathers were found beneath a Bald Eagle nest also on the zoo grounds.

Another hypothetical predator threat to Coops is the colonization of urban habitats by Northern Goshawks, which are now common nesting residents in cities in Europe (e.g., Germany: Rutz 2008) and Asia (e.g., Japan: Natsukawa et al. 2017). Predation by urban Goshawks has decreased the urban populations of smaller raptors elsewhere (e.g., Eurasian Sparrowhawk). I would expect that Cooper’s Hawks would be on the menu for an urban Goshawk in Seattle.

Despite all these threats, the Seattle urban population of Cooper’s Hawks continues to grow, nearly tripling in the last 10 years. It will be fascinating to see how dense the population becomes before it finally reaches carrying capacity.

RECOMMENDED READING

For more on the Cooper’s Hawk, these two references are great places to start.

ACKNOWLEDGEMENTS

The author wishes to acknowledge the influence of raptor biologist Bud Anderson. Gratitude to Patti Loesche for her expert editorial oversight. Thanks are due to my Urban Raptor Conservancy colleagues Patti Loesche and Martin Muller, as well as Jack Bettesworth, Chris Anderson, Tom Aversa, Woody Wheeler, Andy Stewart, Bob Rosenfield, Brian Millsap, Jeep Pagel, Jim Watson, Dan Varland, Barbara Deihl, Kim McCormick, Ben Vang-Johnson, and the many dedicated volunteers who have
THE COOPER’S HAWK: HISTORY AND CURRENT STATUS IN WASHINGTON

contributed to the Seattle study over the last 16 years.

REFERENCES

THE “WESTERN FLYCATCHER” PROBLEM IN EASTERN WASHINGTON: LATEST FINDINGS AND SPECTROGRAM ANALYSIS

JONATHAN B. ISACOFF, Environmental Studies Department, Gonzaga University, Box 53, Spokane, WA 99258-0053; isacoff@gonzaga.edu.

Figure 1: “Western Flycatcher” at Mt. Spokane, Spokane County, June 2011. (Photo by © Jon Isacoff).

ABSTRACT

Recent research on the taxonomical status of “Western Flycatchers”, *empidonax occidentalis* (Cordilleran Flycatcher) and *E. difficilis* (Pacific-slope Flycatcher), strongly suggests extensive genetic mixture. The controversial split creating these two species in 1989 may well be reversed in the near future. This study presents an analysis of the first and second phrases of dawn song spectrograms of the two species extant in the eBird/Macaulay Library databases. The sample was drawn from all the four possible entries appearing in eBird: Cordilleran Flycatcher, Pacific-Slope Flycatcher, Pacific-slope/Cordilleran Flycatcher (Western Flycatcher), and Cordilleran x Pacific-slope (hybrid). The geographic area covers all available recordings in Washington East of the Cascades and the Idaho Panhandle, a sample of 29 individuals. I conclude that with one exception, the first and second phrases of all the available spectrograms in the databases indicate a mixture of the two ideal-type *E. occidentalis* and *E. difficilis* “dawn songs.” This is consistent with the latest literature analyzing the genetics of “Western Flycatchers” and supports the hypothesis that virtually all birds in the contact zone are genetically mixed.
OVERVIEW

The “Western Flycatcher” complex has been enigmatic and frustrating to birders throughout the Western United States for decades. Originally thought to be one species, the American Ornithologists Union (AOU) split the “Western Flycatcher” into two in 1989, the interior occurring *E. occidentalis* (Cordilleran Flycatcher) and coastal *E. difficilis* (Pacific-slope Flycatcher) (Cornell Lab 2020a). There is a third closely related species *E. flavescens* (Yellowish Flycatcher) that occurs from Mexico South to Costa Rica (Cornell Lab 2020b). In 2009, Rush et. al. published the first analysis of molecular variation of “Western Flycatchers” in interior British Columbia and Alberta. They concluded that most birds in the study area are of mixed genetic lineage. They also concluded that “the hybridization might not affect populations outside of the contact zone” and that the allotropic populations East and West of the contact zone were genetically distinct (Rush et. al. 2009). Link et. al. (2019) broadened this study area substantially to include much of the Western US as well as the range of *E. flavescens* in Mexico. They conclude that the number of species likely present varies according to which species concept is employed. Using a phylogenetic species concept, they find “either a single, widely distributed species (if putative hybrid individuals are included) or two species (if hybrids are excluded), with one lineage inhabiting the Sierra Madre del Sur and the other the remainder of continental North America.” However, “A genotypic clustering species definition (Mallet 1995) identifies four distinct species, coinciding with our USW, USE, MXO, and MXS regional definitions.” Pieplow (2010, 273) suggests that “In the hybrid zone East of the Cascades from Oregon to British Columbia, birds are genetically mixed and songs and calls are intermediate.” Per above, Rush et. al. (2009) extend that range East into Alberta.

STUDY AREA

The study area is comprised of eBird data drawn from Washington state East of the Cascade Range and to expand the sample size, and the Idaho Panhandle, which is ecologically contiguous with Eastern WA.

METHODS

I analyzed the first and second phrases of dawn song spectrograms in the eBird/Macaulay Library databases from the geographic area described above. While a larger sample size could be drawn by examining call notes and song fragments, the study focuses solely on dawn songs. Per Pieplow (2011), both call notes and position notes apart from the dawn song are highly variable as individual male birds may offer a variety of different call notes. He characterizes the two dawn songs as follows (Figure 3):

1. “In both species, the first element of the dawn song is a brief, high-pitched, simple whistle of variable inflection.

2. The second element is the loudest, longest, and most distinctive: in Pacific-slope it usually sounds vaguely two-parted (or at least split in the middle by a consonant), whereas in Cordilleran it usually sounds...
like a single slurred whistle. (Thus, the distinction in this case is the reverse of that in the position note.)

3. In both species, the third song element is a clipped, lower-pitched, two-phrased note; the second note tends to be higher than the first
Pieplow (2010, 272-273) describes the songs above as follows: The *E. occidentalis* dawn song is “Tseet… Pswee-er!… Chippit! The *E. difficilis* dawn song is “Teet… Psee-bit!… Chi-pee!” To assess the relative mixture or purity of “dawn songs” in the study area, I analyzed the eBird/Macaulay Library spectrograms in comparison to Pieplow’s examples illustrated and described above. For the first phrase, if the frequency fell between 5.25 and 6.00 KHz, I coded it as “mixed.” For the second phrase, if the frequency or spectrogram shape deviated from both “ideal-type” examples above, either in frequency or spectrogram shape, or both, I coded it as “mixed.”

ANALYSIS

I found that 28 of the 29 individuals sang a dawn song that was mixed in one of three ways. Nineteen individuals sang both mixed first and second phrases. Seven individuals sang a mixed first phrase with a pure or near-pure *E. difficilis* second phrase. One individual sang pure *E. difficilis* first phrase and a mixed second phrase. One individual, from Bear Canyon, Yakima county, Washington at the Western edge of the contact zone, sang both a pure *E. difficilis* first phrase and second phrase. No birds in the sample sang a pure or near-pure *E. occidentalis* first phrase or second phrase. A key finding is that while the majority (19/26) of second phrases in the sample were “mixed,” all exhibited a clear break in the second phrase, indicating a spectrogram more like the putative pure *E. difficilis* than *E. occidentalis*. Below is an archetypical example from the study sample of a mixed dawn song with comments by Rush (2019):

Rush says, “The songs… recorded are typical of intergrades. They appear more like Pacific-slope to me, but the peak frequencies are not as high and, e.g., the second song type in the typical sequence is more rounded. But, the second song type retains the break in the middle, which you really don’t find in pure Cordilleran populations.”

DISCUSSION

The findings indicate that field-identifiable pure “Western Flycatchers” in the contact zone, including most or all Eastern Washington and Northern...
Idaho, are very rare, or perhaps non-existent. This corroborates the most recent research (Link et. al. 2019, Rush et. al. 2009) indicating that there is extensive genetic admixing within this range. The findings also indicate no basis for pure *E. occidentalis* either in Eastern Washington or the Idaho Panhandle with the caveat that the sample range is limited to what is extant in eBird. Per above, none of birds in the sample sang either a pure or near-pure *E. occidentalis* first or second phrase. An interesting additional conclusion from the findings is that there is likely much confusion within the eBird user community regarding audio identification of the putative *E. occidentalis* and *E. difficilis* in the field (Fig 1). Following Pieplow (2010, 2011), call notes, including the oft-cited “position note,” and song fragments are highly variable and thus unreliable. But even the seemingly reliable dawn song is likely not as reliable as was thought. While it is established that experienced birders can distinguish the ideal-type pure-type *E. occidentalis* and *E. difficilis* dawn songs in the field, the subtle distinctions between pure *E. difficilis* and mixed “dawn songs” – which comprise 28 of the 29 the dawn songs found in this study – are quite possibly not detectible by the human ear. While the potential re-merger of *E. occidentalis* and *E. difficilis* would render this point moot, this study indicates that virtually no birds in Eastern Washington or Northern Idaho can be safely classified as either of the putative two species, either by the human ear or by spectrogram analysis.

ACKNOWLEDGMENTS

The author wishes to thank Hugh Lefcort, Carl Lundbland, and Neil Paprocki for their generous and helpful comments on earlier drafts of this paper.
REFERENCES

On June 30, 2020, the number of corvids in Washington (and the world) dropped by one. The Committee on Classification and Nomenclature—North and Middle America of the American Ornithological Society (formerly the American Ornithologists’ Union) officially removed the Northwestern Crow (Corvus caurinus) from the Check list of North American Birds (Chesser et al. 2020). The committee concluded that the Northwestern Crow was simply “a geographical trend, rather than a species or subspecies, and thus is treated as a junior synonym of Corvus brachyrhynchos.” Decisions by the committee to add, delete, or rename species are often contentious because taxonomists vary in their philosophy as to what constitutes a species and birders bemoan changes to their life lists. The gold standard for defining a species has traditionally been its reproductive isolation from other similar taxa. But reproductive isolation is just a point on a path that taxonomists can now view more thoroughly with the aid of genetic assays that reveal more and more of a taxon’s evolutionary history. Assessing reproductive isolation in the complex histories that are now available for many taxa is difficult, causing some taxonomists to abandon what most of us learned as the ‘biological species concept’ altogether. Rather than requiring reproductive isolation, many taxonomists define a species as the smallest set of organisms that share a unique, independent evolutionary trajectory. In merging the Northwestern and American Crow, the AOS committee based its decision
on “genomic data that indicate a lack of reproductive isolation (Slager et al. 2020), clinal variation, and a lack of consistent differences in size, ecology, and vocalizations (Rhoads 1893, Johnston 1961, Slager et al. 2020).” In other words, they decided that these crows, which range across nearly all of North America, have shared a complex evolutionary history that includes hybridization between the two taxa that were on independent evolutionary paths around a half a million years ago. The creation of a new lineage by hybridization is termed reticulate evolution. This history is distinct from their closest relative, the Carrion Crow (including both the all-black Corvus (corone) corone and the grey-coated C. (c) cornix; Haring et al. 2012), which inhabits a significant swath of the Palearctic.

The merger of the Northwestern and American Crows was a long-time in the making. Spencer F. Baird (1858), the first curator at the Smithsonian, recognized the two species as distinct based on size, voice, and habitat use. However, other early ornithologists working along the Pacific Coast noted that these differences were better ascribed to clinal change and perhaps a local adaptation to resources (Cooper 1870, Rhoads 1893). This thesis was advanced by David Johnston in a thorough monograph on crow systematics in 1961. Many of us studying crows agreed with Johnston’s conclusions (Marzluff and Angell 2005, Dos Anjos et al. 2009), but genetic evidence would be necessary before an official proclamation could be made. Professor Sievert Rowher, Robert Zink, and others at the University of Washington began to sample crow DNA in the early 2000s with the hope of providing the needed evidence. But little progress was made until David Slager, then a graduate student in Professor John Klicka’s lab at the Burke Museum, decided to advance the earlier crow genetic work and assess the American Crow hybrid zone for his dissertation. His publication in 2020 in the journal Molecular Ecology provided the proverbial nail in the Northwestern Crow’s coffin.

I was not directly involved in research conducted by Dr. Slager and others, but I sat on Slager’s graduate committee and provided samples to his team for analysis. I believe Slager’s study was definitive because it subjected a large sample of crow DNA from a wide geographic range to a bevy of state-of-the-art genetic analyses. The complexity of this work, while easily grasped by today’s taxonomists, is a challenge for the rest of us to understand fully. But, having observed Dr. Slager propose, report, revise, and successfully defend his research to distinguished geneticists throughout his graduate career, I am confident the complexity he revealed is accurate. And, fortunately, the take-home messages are clear and compelling.

The central finding from Slager’s team was the discovery of a broad hybrid zone (>900 km) between Northwestern and American Crows centered in British Columbia (Figure 2). A sample of over 200 crows’ mitochondrial DNA (mtDNA, which is inherited only by females) and a sample of nuclear DNA from 62 crows revealed this hybrid zone. While coming from fewer individuals, the nuclear DNA provided a more inclusive picture of the crows’ genomic differences as it covered over 7000 loci (genes) spread among all chromosomes. Not only did the team reveal a hybrid zone, but it confirmed the ancient existence of two distinct crow lineages. There was evidence of both a Northwestern and an American Crow that differed by about 1% of
their mtDNA (for comparison, chimpanzee and human mtDNA differs by 8.9%; Arnason et al. 1996) and included three genes with variants unique to each species (fixed alleles). Slager and his team used distinctions in mtDNA to score each sampled crow as belonging to the Northwestern or the American lineage (crow haplotypes represented as circles and in pie charts; Figure 2). Also, the nuclear DNA allowed the team to record the blended ancestry derived from American and Northwestern lineages within individual crows (bar chart in Figure 2). Both results reveal the continued existence of

Figure 2: Extent of hybridization between Northwestern Crow (blue) and American Crow (red). Bars and circles at left show the genetic makeup of 62 sampled crows from southeast Alaska (top) to southern Pacific coast and eastern (bottom) locations. The bars indicate the proportion of the crow’s nuclear DNA that was derived from Northwestern (blue) versus American (red) ancestors. The adjacent circles show the mitochondrial DNA haplotypes of the same individual (note that crows with mixed ancestry could be of either American or Northwestern mitochondrial haplotype). The larger pie diagrams on the map of the Pacific Northwest depict the mitochondrial haplotype proportions within the full sample of each region, which ranged from 6-31 crows per location. Background coloration on the map indicates the range maps of Northwestern Crow (green) and American Crow (orange), and the area over which they overlap (purple). Samples from Alaska beyond the mapped region were 100% Northwestern haplotype and those elsewhere were 100% American haplotype. The crow illustration was drawn by Kevin L. Epperly. Reprinted with permission from *Molecular Ecology* 29:956-969.
a small, pure Northwestern Crow lineage in Alaska and an extensive, pure American Crow lineage south and east of the hybrid zone (Figure 2). Based on genetic differences these two lineages diverged from a common ancestor about 443,000 years ago.

The modern crows inhabiting Washington illustrate the geography of hybridization well. All 16 birds that Slager and his team sampled from our coast had nuclear DNA that was in part from the Northwestern lineage and in part from the American lineage (Fig. 2 sample regions from Gray’s Harbor County, ghc, to Neah Bay, neah). All but one of five birds from eastern Washington (ewa) had nuclear DNA that was solely from American Crows (Fig. 2). The larger sample of mitochondrial DNA found only 10 crows in Washington exhibiting the Northwestern Crow haplotype. Six of these Northwestern types were collected in Clallam County between Sekiu and Neah Bay (5 others from this location exhibited the American Crow haplotype). Only 1 of 30 crows collected in King and Pierce Counties was of the Northwestern haplotype. That bird was collected in Vaughn, WA; all others from Tacoma, Seattle, Gig Harbor, Kent, and Edmonds had the American Crow haplotype. The other location with numerous Northwestern haplotypes was in Kitsap County, where 3 of 13 collected birds possessed that genetic signature. All 31 crows from Pacific and Grays Harbor Counties had mitochondrial DNA from the American Crow lineage. The seven crows from eastern Washington (Okanagan and Asotin counties) were of the American Crow haplotype.

The colonization of North America and subsequent divergence of Northwestern and American Crows appears linked to the periodic advancement of continental ice sheets that occurred every 100,000 years or so during the Pleistocene. Ancestral crows crossed Beringia approximately 2 million years ago leaving those in Europe to evolve into Carrion Crows and those in North America to diverge into American and Northwestern crow lineages (Harding et al. 2012, Slager 2020). As the ice-covered parts of northern crow habitat expanded, the remaining ice-free refugia, such as occurred on Haida Gwaii, would isolate small populations of ancestral crows from more extensive, southern populations. While isolated for millions of years, New and Old World crows would evolve into distinct species. And, while isolated for hundreds of thousands of years, northern and southern New World crows would accumulate differences in their DNA resulting from mutation, the random possession of specific gene variants (alleles) in the few members of a small, isolated population, and perhaps natural selection for southern or northern lifestyles. Interbreeding reduces these genetic differences when the glaciers recede, and northern and southern populations recontact each other. Over time, the two New World crow lineages may have become more and less distinct with the waxing and waning of ice. Still, at present, without physical separation and in the presence of extensive interbreeding, they are genetically more similar than in the past. The clinal nature of the slight differences between the two lineages is simply a byproduct of historical separation along a north-south axis and current interbreeding where the two forms meet in the middle.

So, why do we not recognize the pure Northwestern Crow lineage that exists in Alaska as a distinct species? Taxonomists favoring the traditional...
“biological,” species concept would reject that only because of extensive hybridization. Others might consider the historical arc in distinctiveness when deciding if two populations belong to the same species. Although they view the amount of distinction necessary to describe a species as somewhat arbitrary, they concede that a population is an evolutionarily significant unit if it has: 1) current and long-standing ecological and genetic distinction or 2) current and historical ecological difference with a genetic distinction that is increasing through time, or 3) current and historical genetic distinction with an ecological difference that is growing through time (Crandall et al. 2000). One could argue that the Northwestern Crow had historical genetic and ecological distinction. Still, as American Crow genes have flowed into coastal regions, both aspects of this distinction are waning. A likely reason is that the difference in DNA that remains neither confers an advantage to those crows that reside in Alaska, nor does it provide a reliable cue that guides mate choice. Crows that carry the Northwestern genotype do not isolate themselves from those with the American genotype geographically, ecologically, or behaviorally. At present, the Northwestern Crow is not pursuing a unique evolutionary trajectory independent of the American Crow.

There is more to the evolutionary histories of Northwestern and American Crows that Dr. Slager investigates in his unpublished dissertation (Slager 2020). Of special interest to me is his peek into the genetic makeup of crow specimens collected for museums since the late 19th century. That analysis will allow an independent test of the idea that recent urbanization helped drive the Northwestern Crow to extinction (Marzluff and Angell 2005). We can expect these results in future publications by Slager and his colleagues.

The evolutionary history of Northwestern and American Crows is similar

Figure 3: A crow hangs out hopefully with a grizzly in British Columbia. (Photo by © John Marzluff.)
to that of the Common Raven (Corvus corax) in North America. As with crows, ravens first invaded the New World via Beringia around 2 million years ago (Omland et al. 2000). When glaciers withdrew, and sea levels rose, the North American ravens were isolated from those distributed in forest climes across Europe and Asia. In isolation, Common Ravens from the Old and New Worlds accumulated genetic differences through neutral processes, including genetic drift (random differences between those founding New World populations and those in the Old World) and normal mutations in their DNA. New World ravens, distributed south of the glaciers, gave rise to the Chihuahuan Raven about 1 million years ago (Corvus cryptoleucus; Omland et al. 2000, Kearns et al. 2018), which developed effective reproductive isolation because of their unique vocalizations and especially social habits (they live and obtain mates from within loosely organized flocks). However, New and Old World ravens maintained similar ecologies, so during periods of high sea level, starting 440,000 years ago, Old World ravens reinvaded North America and interbred with those that colonized over a million years earlier (Kearns et al. 2018). As with crows, this hybridization merged and blended the ravens’ once distinctive genomes. The two ancient raven lineages, which we termed California and Holarctic clades based on differences that remain in their mtDNA (just as in the two crow haplotypes), show a geographic pattern reminiscent of that found in crows (Omland et al. 2000, Kearns et al. 2018). The California clade, derived from the colonists 2 million years ago, is most common along the southern Pacific coast. The Holarctic clade, derived by more recent invasions, is found throughout the Old World, in the eastern and midwestern USA, and along the Northwest coast. Both clades occur on Washington’s Olympic Peninsula, and individuals of each clade freely interbreed with no fitness cost to hybridization (Webb et al. 2011).

The ability of climate shifts to reverse the evolutionary trajectories of species, in essence, obliterating the creation of species millions of years in the making, is a harsh lesson I take from the sagas of Northwestern Crows and California clade ravens. The genetic analyses that David Slager and other phylogeographers have brought to bear on age-old evolutionary questions have shown us that lineages of similar organisms become more AND less distinct through time. Often climate change is responsible for the waxing and waning of distinctiveness. Sometimes distinctions prevent hybridization, creating species. But this is not guaranteed, and as human-driven climate change increasingly brings long-isolated species into contact, we may lose additional species.

ACKNOWLEDGEMENTS

Dave Slager, John Klicka, and Ed Swan provided valuable advice on the crafting of this manuscript. The James W. Ridgeway endowment provided financial support.

LITERATURE CITED

ADIEU TO THE NORTHWESTERN CROW

NEW SPECIES ACCOUNTS

Yellow-bellied Flycatcher at Windust Park, Franklin County on 30 August 2009. (Photo by © Michael Woodruff.)
SPECIES ACCOUNT: WHOOPER SWAN (CYGNUS CYGNUS)

TOM AVERSA, 115 Fisher Rd. Unity, ME 04988. Tom.aversa@gmail.com, WOS member.

The state’s first accepted Whooper Swan (Cygnus cygnus) was reported across three counties in the northwestern agricultural deltas from 25 December 2006 to 4 March 2007. It was seen and photographed by many as it moved around with wintering swan flocks from Snohomish to Skagit to Whatcom counties after being initially reported by Steve Mlodinow on Christmas day. I was lucky enough to see it twice.

My first sighting was on 27 December 2006 when I met Hal Opperman for a day of birding. He had been covering the Camano Island section of the Skagit Bay CBC for years, so we hoped to scout for birds of interest that might be searched for on count day. We also felt we could spend the day attempting to relocate the previously reported Whooper Swan and other lesser rarities. My notes indicate that we did indeed locate the Eurasian vagrant just east of the Bob Heirman Wildlife Park in the same Snohomish County fields where Steve had initially reported it. The waterfowl flock included about 500 swans as well as a small group of Greater White-fronted
Geese and a continuing first-year Emperor Goose, which had been present since early December.

Once we had the swan in view, it was recognized as an adult Whooper Swan without difficulty. The size of the bright white bird easily matched that of the surrounding Trumpeter Swans. The extent of fleshy yellowish orange at the base of the bill far exceeded that of any “Bewick’s” Swan that I have previously seen in Washington. The brightly colored blob (for lack of a better word) at the base of the bill, not only encompassed the anterior end of the nares, but also extended down the bill in a point along the gape line at least halfway to the tip of the bill.

After a few days, the bird became more difficult to locate. Many birders made a weekend excursion, and some found it on 30 December, but it was not seen on the following day to my knowledge. Imagine my surprise when I was birding the Milltown area at the southern edge of the Skagit flats on 4 January 2007 and found the swan in a mixed flock of swans close to Milltown Road just north of the Skagit County line. Fortunately for others who had not seen it yet, the swan remained in Conway area fields until 2 February. It then disappeared once again for a couple of weeks before showing up near Ferndale in Whatcom County. Wayne Weber posted to Tweeters after seeing the bird on 2 March that it was apparently seen repeatedly since 18 February near Ulrich Road just south of Ferndale. It only remained in that area until 4 March (eBird) before departing ostensibly back to its breeding range.

Whooper Swan breeds east from Iceland across northern Europe to eastern Siberia. They winter generally well south of their breeding range from Ireland east across Eurasia to Japan but also winter locally on Iceland (Carboneras & Kirwan 2020). They are found with some regularity in winter around the perimeter of Alaska, including breeding twice on Attu in the nineties (Sykes & Sonneborn 1998). They only rate a “rare” classification from the Alaska Checklist Committee (2020), implying that occurrence is near annual. Otherwise, they are extremely rare in North America. Most reports away from the West Coast are considered to be of captive origin although two were validated from Labrador including an emaciated bird recovered dead in late March (eBird).

Reports have been difficult for record committees to review, as is true with all waterfowl. Determination of provenance is problematic with feral birds and escapees widespread. In fact, what was thought to be the first North American record, a specimen from September 1903 collected in Maine (Knight 1908) was just rejected after a thorough review by the Maine BRC based on both identification and provenance concerns. The specimen had been lost and a photo and measurements did not add up to Whooper Swan (MBRC in press). Generally, only reports from late fall to winter are considered for acceptance. I observed several Whoopers in Massachusetts in the nineties including a pair that bred and stayed over a series of years. In Massachusetts alone at that time, there were at least eleven Whoopers maintained in captivity (French 1997). In Washington, an individual photographed near Elma in Grays Harbor County from 1-3 April 2018 was not accepted due to concerns with origin. This stemmed from its spring appearance along with the fact that a farm nearby kept Whoopers which it did not always properly contain (WBRC pers. comm.).
There are few solid records from the Pacific Northwest. An individual accepted by the Idaho BRC from Hagerman WMA in the Snake River Valley, remained from 26 November to 12 March 2008 (IBRC). Oregon accepted three records from both sides of the Cascade crest, all occurring between November to January, from Arlie in the Willamette Valley, Lower Klamath NWR, and Summer Lake (OBRC). Also, a Whooper present in Wyoming 26 November to 3 January 2004 at Yellowstone NP is listed on eBird (eBird). Because the BC BRC was only formalized a few years ago, the picture is less lucid there. The committee has not added the species to the official checklist despite three records being listed in Campbell. One of these represented a July report, but the others from 1977 and 1999 came from November (Campbell 2001). California accounts for most records from the lower 48 states despite wavering for years in assessing reports as valid. They have now accepted eleven records, all north from San Jose, including one that returned a successive winter. All were found from late November to February with the latest remaining to 13 March. (Tietz & McCaskie 2020). It seems that the Northwest may be overdue for another Whooper. Swan numbers in Washington make it a likely spot to search particularly in the late fall to winter timeframe. Springtime occurrence could also be possible as eBird does lists a record from 11 April 2003 from the Yukon, which may have been a bird returning northward. Keep checking those swan flocks!
LITERATURE:

Royal British Columbia Museum; University of British Columbia Press.

SPECIES ACCOUNT: RUBY-THOATED HUMMINGBIRD (ARCHILOCHUS COLUBRIS)

SHAWNEEN FINNEGAN, 12150 SW Trail Place, Oregon 97008; shawneenfinnegan@gmail.com. Washington Bird Records Committee member and WOS member.

Figure 1: The rich green crown and upper parts, rounded head, and medium straight bill are indicative of Ruby-throated Hummingbird. Although backlit the outer primary shapes are more apparent on the second photo, an important feature in separating the two Archilochus species. (Photos by © Bob Flores.)

Washington’s first accepted Ruby-throated Hummingbird appeared at Bob Flores’ Ridgefield, Clark County home on October 24 and 25, 2017. Bob saw it twice on each date, always at the feeder. Thankfully, he was able to take good photos of the female-plumaged hummingbird from five feet away through a window.

Bob puzzled over the identification. Per his notes, it was a small hummingbird with a rich bright green crown and upperparts and a medium-to-short bill with no curvature. The underparts were mostly bright white. The face had a grayish wash and there were dusky streaks on an otherwise white throat. Its flanks were faintly washed with green. The tail was green and black with obvious white tips. No cinnamon tones were observed. He considered Calliope, Costa’s, and Anna’s. Calliope was eliminated as this new bird was larger and lacked any buffy-cinnamon on the flanks or rufous tones in the tail. It was too small and white below to be Anna’s, a species he sees almost daily, and its structure and straight bill excluded Costa’s. He also considered Black-chinned Hummingbird, but eliminated it based on bill length.
Bob forwarded photos to others seeking help with its identification. Brad Waggoner, Chair of the Washington Bird Records Committee (WBRC), forwarded them to me asking for my thoughts. I contacted Sheri L. Williamson, author of *Peterson Field Guides Hummingbirds of North America*, for her opinion as I felt it was a Ruby-throated Hummingbird.

There are two members of the genus *Archilochus*: Black-chinned (*A. alexandri*) and Ruby-throated (*A. colubris*). Black-chinned is the western counterpart breeding from very southern central British Columbia, east of the Cascades in Washington and Oregon south to Baja, Mexico. In the Pacific Northwest they are rare west of the Cascades.

Ruby-throated is the eastern counterpart. They breed farther north and west than one might think. Their range extends north along the eastern flank of the Rockies in Alberta. They are apparently expanding their breeding range into British Columbia (~600km north of Black-chinned’s range). There are numerous photos on eBird from the Peace River Valley, BC area. Further south it is the only hummingbird that breeds east of the Mississippi.

These two species are characterized by their small size, being green above and white below, with medium-to-long straight black bills. Males have forked tails while those of females and immature (both sexes) are more rounded and notched. Their tails lack any rufous tones and extend beyond the wing tips. The identification of adult males is straightforward, females and immatures are not. Female Black-chinners typically have grayer crowns, blockier shaped heads and longer bills. Ruby-throats have richer green upperparts, more round-shaped heads, and shorter bills.

![Figure 2: Immature female Ruby-throated and Black-chinned Hummingbird primaries comparison. (Drawing by © Steve N. G. Howell.)](image-url)
Archilochus have uniquely shaped primaries (the 10 longest wing feathers used for flight). Very narrow inner primaries separate Archilochus from other hummingbirds. The innermost six primaries (P1–6), get progressively wider, but are overall narrower than the outermost four primaries (P7-10). The shape of the outermost primary (P10) is very important. On Black-chinned P10 is wider and has blunt tip, while P10 on Ruby-throat’s is comparatively narrow and tapered at the tip. Good photographs are essential for assessing these features.

There was some disagreement over the identification of another expert, but Sheri Williamson did an extremely thorough assessment (see her composite below). After lightening the photos of the Ridgefield bird, she concluded without equivocation that it was a juvenile female Ruby-throat. Her explanation and her composite, its shorter bill and much greener upperparts convinced the WBRC that it was indeed a Ruby-throat.

Figure 3: The composite compares the Ridgefield bird to juvenile females of both Black-chinned (bill and wing) and Ruby-throated (wing only). The Black-chinned shows a grayer, head, longer and more decurved bill, and more angular head shape. The elongate, sinuous tips of P2-5 are diagnostic for Ruby-throated and inconsistent with Black-chinned. TOP ROW: Head of Ridgefield bird). 2ND ROW: Head of a female Black-chinned. 3RD ROW: L (WA bird); middle (RTHU); R (BCHU). (Composite by © Sherri L. Williamson.)
Neighboring Oregon and Idaho each have three confirmed records. Five of the six records are of birds occurring in September. Oregon has one adult male from June 2012. California has more than 20 records, with the majority of them occurring from late August–September. There have been at least three in Alaska including a July 2004 adult male photographed in northern central Alaska. There have been a small number seen and photographed per eBird annually in the Peace River Valley area, British Columbia particularly since 2009.

The WBRC re-reviewed a previously accepted sight record of Ruby-throated on June 28, 1992 from Kittitas County and determined the documentation was not adequate. At that time Anna’s Hummingbird was not seriously considered as a possibility, as it had yet to expand its range into the Mid-Columbia Basin. Since that time Anna’s have continued extending their range both north and east. This species is now a permanent resident north to southern British Columbia and found regularly well out onto the Columbia Plateau.

REFERENCES:

SPECIES ACCOUNT: BROAD-BILLED HUMMINGBIRD (CYNANTHUS LATIROSTRIS)

MATT BARTELS, 611 N 50th St., Seattle, Washington 98103; mattxyz@earthlink.net. Washington Bird Records Committee member and WOS member.

Figure 1: Broad-billed Hummingbird in Skamania County, 25 October 2014. First record for Washington State. (Photo by ©Matt Schroeder.)

The first (and only, so far) record of Broad-billed Hummingbird was a bird seen on October 25 and 26, 2014. On the morning of the 25th, Matt Schroeder photographed an immature male Broad-billed Hummingbird at his home in Carson, Skamania County. He sent word to Bob Hansen, a long-time compiler of information on birds in the Columbia Gorge. After receiving permission to share the report, word went out over the Oregon birding list, OBOL, together with an invite for others to visit the following day. I showed up around 9:00 on October 26 and settled in to watch the ornamental plants the bird apparently favored. Between 9:15 and 9:30, the Broad-billed Hummingbird reappeared. It put on a show, visiting the flowers and nearby conifers. After that 15-minute visit, the hummer lifted off and disappeared to the north, never to return.

An immature male, the id was relatively straightforward: First was the underside of the long, slightly curved bill – bright red at the base and extending part way toward the tip. That alone eliminated our ‘regular’ hummingbirds...
and left only southern rarities. The face pattern showed a long bold white stripe back from the eye over a dark cheek. White on the sides of the throat helped to make the dark cheek patch stand out. This very stripy impression on the face ruled out all but White-eared Hummingbird. The hummer regularly fanned and pumped its tail while flying around, and this allowed careful views of the tail-feathers – The upper side of the tail had a broad dark subterminal stripe across all feathers. On the body of the bird, the undersides were gray with just a little shading of green on the flanks, and the throat was mostly dark in the center, but at least once flashed some blue. The upper side was greenish with some yellow hints. Combined, these field marks helped distinguish from White-eared. In flight, the constant tail-pumping, and the vocalizations – sounding like sharp Ruby-crowned Kinglet call notes to me – both confirmed the identification (Williamson, 2001).

Broad-billed Hummingbirds have a range that extends from central and western Mexico up into the southern edges of Arizona and New Mexico. Although mostly resident, the birds in the northern part of the range migrate south after breeding. That provides a likely clue to the timing of the arrival of a Broad-billed in Washington. “Reverse migration” is a process by which some migratory birds get turned around and migrate in the opposite direction from their intended route (Howell et al. 2014). Instead of going south, fall reverse migrants can find themselves heading north and this method provides some of the most surprising records in Washington. Birds like the 2017 Zone-tailed Hawk (November), the 2016 Dusky-capped Flycatcher (November), and the two Yellow-throated Warbler records (December) are all also vagrants likely brought here by reverse migration. The four Broad-billed Hummingbird records in Oregon all range in dates from mid-September to mid-October (Hertzel, 2020). Idaho’s only record, in contrast, is a May bird (IBRC, 2020). Broad-billed Hummingbirds have been found as far away from their range as New Brunswick, Massachusetts, and many places in-between.

LITERATURE CITED:

THE STATUS OF THREE RARE SHOREBIRD SPECIES IN WASHINGTON

DENNIS PAULSON, 1724 NE 98 St., Seattle, WA 98115; dennispaulson@comcast.net. WOS member.

This note is to summarize the record of occurrence of three rare shorebird species in Washington state. All have been the subject of scrutiny of and voting by the Washington Bird Records Committee over the past two decades.

COMMON RINGED PLOVER (CHARADRIUS HIATICULA)

This wide-ranging plover breeds at arctic and subarctic latitudes all across Eurasia, from Baffin Island in Canada to St. Lawrence Island in Alaska. It winters on European coasts and widely in Africa and southwestern Asia east to India.

Washington has only a single documented record (Aanerud 2011), an immature seen at Port Susan Bay, Snohomish County, on 23 September 2006. No photos were taken, but a sketch showed field marks. This bird was presumably from Asian breeding populations. The species has not been recorded in British Columbia or Oregon, but California has three accepted records over the period 19 August - 15 October.

There are few other records of the species in North America, but they span the breadth of the continent, more in Alaska and on the East Coast, as would be expected. Records from eastern North America are very likely of birds of European origin.

LESSER SAND-PLOVER (CHARADRIUS MONGOLUS)

Figure 1: Adult Lesser Sand-Plover at Oyhut Wildlife Area, Ocean Shores, on 30 August 2012. (Photo by © Gregg Thompson)
This distinctive plover breeds in disjunct populations in Tibet, Mongolia, and Siberia and winters from the east coast of Africa to Australia and southwest Pacific islands. It has been adequately documented five times in Washington, all in Grays Harbor County around Grays Harbor: Oyhut Wildlife Area, Ocean Shores, 26 Aug 2010, 29–30 Aug 2012, and 1–2 Sep 2013; Bottle Beach, 7 Sep 2013; and Ocean Shores, 16–22 Aug 2015. The first three of these records were discussed by Mlodinow & Bartels (2016).

It is interesting that all records fall in a very narrow time range, from 16 August to 7 September. All of the birds were adults except the 1–2 September bird, a juvenile. The August birds were adults in alternate plumage or molting from it, while the 7 September adult was in basic plumage. This does not mean that the prebasic molt occurs in only a week, just that later in the season it is more likely a bird will be in basic plumage.

The species has been widely reported in North America, very regularly in the Aleutians and Bering Sea islands and less so on the Alaskan mainland. There are four accepted records from British Columbia, spanning the 22 June - 29 July period. There are five records from Oregon, 11 July - 16 October, and 19 records from California, 25 June - 29 October. Presumably, these birds all came from Siberian populations.

In addition, the species has been reported surprisingly widely in the remainder of the Lower 48 states, with scattered records even along the Atlantic and Gulf Coasts. All of these eastern birds were far from the nor-
mal migration pathways of the species. There are also many records from western Europe, presumably from Tibetan/Mongolian populations.

TEMMINCK’S STINT (CALIDRIS TEMMINCKII)

Temminck’s Stint breeds at Arctic latitudes all across Eurasia from Norway to far eastern Siberia. A long-distance migrant, it winters primarily in equatorial Africa and southern Asia. There is a single accepted record of this species from Washington, a juvenile found at the sewage ponds at Ocean Shores, Grays Harbor County, on 9 November 2005. The bird remained at least until 14 November and was well documented photographically (Aanerud 2011). Such a date is unusually late for a bird that winters at low latitudes in Asia and Africa, but vagrant birds are already not where they should be! The unlikeliness of this widespread Eurasian species even occurring in Washington is underscored by the lack of any other records in the Lower 48. Temminck’s Stint is considered a rare spring and casual fall migrant on the Aleutians and Bering Sea islands and an even rarer vagrant on mainland Alaska. The only other North American record south of Alaska was of a juvenile found at Iona Island, British Columbia, 1–4 September 1982 (Kautesk et al. 1983). I was fortunate enough to see and photograph that bird roosting with a Least Sandpiper, *Calidris minutilla*. Both this bird and the Washington bird were at fresh water, which is typical of the species in migration and winter.

DISCUSSION

Shorebirds have long wings and rapid flight, and we have learned to expect them at surprisingly great distances from their normal migratory routes. Thus, the majority of Eurasian shorebirds have been recorded from North America. The abundance of records in North America of the Lesser Sand-Plover is surprising, however, as it has a more restricted range and breeds at lower latitudes than the other two species treated here that have been much
less frequently recorded. This stems from the assumption that the higher the latitude of a breeding range and the greater the distance of the migration route, the more a migrant might deviate away from its normal routes.

I speculate that this discrepancy could be because Lesser Sand-Plovers, especially adults in alternate plumage, do not look like anything else that occurs in North America, while Common Ringed Plovers are quite difficult to distinguish from Semipalmated Plovers, and a Temminck’s Stint might be difficult to pick out from other stints without a second look. Thus, I suspect that the sand-plover is very likely represented by records out of proportion to the relative abundance of the three species in North America.

LITERATURE CITED

SPECIES ACCOUNT: RED-NECKED STINT
(CALIDRIS RUFICOLLIS)

WILLIAM E. BROOKS, 1410 S Mildred St #708, Tacoma, WA 98465, willbrooks.0@gmail.com. WOS member.

Figure 1: Juvenile Red-necked Stint found by Will Brooks at Griffiths-Priday State Park, Grays Harbor County, showing unwebbed toes. (Photo by © Will Brooks.)

Looking for rare shorebirds is typically an exercise that requires time and patience. Often the differences between shorebird species are subtle, so rarities are easily overlooked without close study. This was certainly the case on August 25, 2019, which started as a fairly slow day in Grays Harbor County. After going to some of the usual birding spots in Ocean Shores, I decided to go to Griffiths-Priday State Park. I had only visited this site once before, and it seemed to get less attention from birders. I arrived at 10:30 AM and walked the trail out to the creek and was immediately greeted by a Buff-breasted Sandpiper, a nice surprise. By following the trail along the creek, I eventually made it to the north side of the creek mouth. Here there were a few hundred Western Sandpipers, which I opted to pick through in search of a stint. By late August, nearly all the peeps migrating through are juveniles. Without the aid of flashy breeding plumage, I was primarily looking at bill and body structure.

After several minutes of looking, I came across a bird that was very similar to a juvenile Western Sandpiper, but it had a slightly smaller bill and longer wings. I was not too excited yet, as bill size is variable in peeps and this bird did not seem to be out of range for a Western Sandpiper. Nonetheless
I started to photograph the bird in hopes of capturing the most diagnostic mark for a stint, unwebbed toes. This is typically easiest to see in a photograph rather than attempting to view the toes mid stride. After sufficiently photographing the bird I looked through my photos to see that in one photo the bird appeared to have unwebbed toes! Now very excited, I moved closer to the flock and attempted to relocate the bird, but in looking at my photos I lost track of it. Only after looking for several minutes was I able to get back on it and get better photographs. If it were not for my good photos of the bird’s toes, I would question the identification.

At this point the question was what species of stint this was. I had previously seen both Little and Red-necked Stints in California, but only in adult plumage. Given how similar its appearance was to a juvenile Western Sandpiper along with several other field-marks, I assumed it must be a Red-necked. I sent a report to Tweeters with it identified as such, but quickly considered Little Stint due to the bright white “braces” on the back. I ended up sending photos to the Advanced Bird ID Facebook page where it was promptly identified - Red-necked Stint. Only a week later I learned how misplaced my consideration of Little Stint was when Adam Crutcher, Adrian Lee, Jason Vassallo, and I found the state’s second Little Stint in Neah Bay. This peep was strikingly different from the Red-necked Stint or any Western Sandpiper on a variety of field marks discussed below.

IDENTIFICATION

Figure 2: Juvenile Red-necked Stint (left) at Griffiths-Priday State Park in Grays Harbor County compared to juvenile Little Stint (right) in Neah Bay, Clallam County. (Photos by © Will Brooks.)

Juvenile Red-necked and Little Stints can be readily distinguished from North American peeps through careful study of relevant field marks (Veit and Jonsson 1984). While both variable field marks, bill structure and plumage brightness are typically good starting points. The stint I observed was similar to a juvenile Western Sandpiper but had a shorter bill and marginally brighter plumage. The bill length and structure were similar to a Semipalmated Sandpiper, but the rufous upperparts were far too bright. Another relevant field mark was the protruding gape notch at the base of the bill. This notch is nearly always present in Red-necked and Little Stints and is frequently absent in Western and Semipalmated Sandpipers (ICYMI: Open Mic: A New Field Mark for Differentiating Stints and Peeps 2017). However, this mark is not completely reliable as plumage can be ruffled to reveal or cover the gape.
The most reliable field mark was the absence of toe webbing. Both Western and Semipalmated Sandpipers are semipalmated, or partially webbed. Both stints have no webbing at all.

More subtle differences in plumage and structure distinguish juvenile Red-necked and Little Stints (Veit and Jonsson 1984). The stint at Griffiths-Priday State Park had bright rufous upperparts and drab upper wing coverts, consistent with juvenile Red-necked Stints. Juvenile Little Stints have bright golden upperparts including the upper wing coverts, and bright white back braces. The golden color in Little Stints is very apparent, particularly so with the Neah Bay bird. Another particularly diagnostic field mark was the anchor patterned scapulars, as opposed to completely black centered scapulars in Little Stints. Additionally, the Griffiths-Priday State Park stint was structurally distinct from a Little Stint. Red-necked Stints have noticeably longer wingtip projection past the tail and have a blunt tipped bill. Little Stints have shorter wings, longer legs, and more fine-tipped, decurved bills.

OCCURRENCE

This Red-necked Stint represents the 9th record in Washington State. Records have been steadily increasing in the state, with the first coming in 1993 and the last record being in 2017. This also represents the first juvenile Red-necked Stint in Washington State. Until 2019, only breeding plumage Red-necked Stints had been observed in Washington state between June 21st and August 1st. In British Columbia only two of 23 total observations of Red-necked Stints are juveniles (Toochin n.d.). In Oregon, two of eleven accepted records of red-necked stints are juveniles (ORBC 2020). This pattern likely does not represent a greater abundance of adult stints but rather a difference in detection difficulty. Many juvenile stints probably pass by undetected from late August to September when many similar looking juvenile peeps are migrating. In California, a state with many careful observers, there are several juvenile Red-necked Stint records (Tietz and McCaskie 2020). Hopefully with this sighting, Washington birders will gain greater awareness and interest in looking through flocks of juvenile peeps.

REFERENCES

The first Washington record was present 5-6 Aug 2011 on the Samish Flats, Skagit County.

During the fall shorebird season in 2011 I was working with The Nature Conservancy as part of their “Farming for Wildlife” project (The Nature Conservancy, 2014). The project partnered with local farmers to flood areas of fallow fields in order to create habitat for migrating shorebirds. On August 5, 2011 I was eagerly anticipating my first survey day of the season. The first field to check that day was on the Samish Flats and flooded habitat had only been created a few days before. There were shorebirds present in the field when I arrived which was a good sign. I was watching several Greater Yellowlegs when I noticed a smaller shorebird in the nearby vegetation. I thought that it looked similar to a Lesser Yellowlegs, but seemed a bit smaller, browner, and short-necked. It actually looked a lot like a Wood Sandpiper which I had become familiar with the previous winter in Australia and southeast Asia, however I had a hard time believing that it really was one since I was in Washington where none had ever been found.

I continued watching the bird and took a couple distant photos with my camera. As I watched it moved into the open, revealing olive-colored legs.
while slightly bobbing its tail up and down in a manner similar to a Spotted Sandpiper, though not to such an extreme degree. There was a pale supercilium that was prominent both in front of and behind the eye and was set off by a brownish cap and dark loral and post-ocular stripes. This separates this bird from Lesser Yellowlegs that do not have as obvious of a supercilium. The bill was much shorter than the Greater Yellowlegs and like a Solitary Sandpiper. At this point I took a few steps closer which caused the bird to flush, allowing me to see a uniformly dark upper side except for a white rump and barred black and white tail. The white rump solidly ruled out this bird as being a Solitary Sandpiper. Fortunately, it landed nearby, and I approached to take a few more pictures. After a while it flew again, and this time called while doing so called several times. The call was similar to that of a Solitary Sandpiper, though the quality of it was hoarser or huskier. In Dennis Paulson’s shorebird guides he describes the call of a Wood Sandpiper as being like that of a Long-billed Dowitcher which I would agree with for this bird. It mainly gave a call that consisted of two similar notes, but a couple times gave a three or four note call. That evening I found this recording made in Italy that is what I remember the call sounding like: https://www.xeno-canto.org/39646

![Figure 2: Wood Sandpiper at Samish Flats, Skagit County 5 August 2011. (Photo by © Ryan Merrill.)](https://www.xeno-canto.org/39646)

While in flight this time I managed to get a few photos, which showed both the upper and under-side of the bird. Visible in the photos are the pale wing linings, unlike Solitary and Green Sandpipers which are darker. It landed one more time where I watched it feeding briefly before flying off again. This time it flew up high in the air heading west toward Padilla Bay. Out of our normal birds, the shape of the bird in flight was most similar to a
Solitary Sandpiper. As it reached the edge of the bay it dropped down near the dike, apparently landing near it.

Unlike most of the fields involved in this project, the habitat was visible from public land meaning the general birding public was free to look for the Wood Sandpiper, so after completing my survey I left to go call Skagit County die-hard Gary Bletsch and find Internet access to be able to post to Tweeters. This worked out well as Gary spotted the bird upon its return to the field in the next few hours and it remained into the following day to be enjoyed by over two dozen birders.

Wood Sandpiper is a widespread shorebird with its expected range spanning most of the Eastern Hemisphere. In North America, however, it is only expected as a migrant in the Western and Central Aleutian Islands of Alaska (Howell, et al. 2014). It is a rare vagrant elsewhere, with most records coming from coastal locations on both sides of the continent. As of November 2020, this remains the sole record of Wood Sandpiper in Washington. Elsewhere along the west coast, British Columbia has two records (Nov. 1994, Oct. 2010), Oregon has two (Sept.-Oct. 2008, Oct. 2020), California has three (May 2007, Sept. 2012, Sept. 2018) and Baja California Sur has one that wintered for two consecutive years in 2010-2012.

LITERATURE:
British Columbia Field Ornithologists. BC Bird Records Committee Sightings Database.
https://bcfo.ca/bc-bird-records-committee-sightings-database/
California Bird Records Committee records database.
SPECIES ACCOUNT: WOOD SANDPIPER (*TRINGA GLAREOLA*)

https://www.californiabirds.org/queryDatabase.asp?species=wood+sandpiper&county=&STARTDATE=&enddate=&partial=on&accepted=on&sort=date
eBird. Wood Sandpiper range map.
https://ebird.org/map/woosan?neg=true&env.minX=&env.minY=&env.maxX=&env.maxY=&zh=false&gp=false&ev=Z&mr=1-12&bmo=1&emo=12&yr=all&byr=1900&eyr=2020
SCRIPPS’S MURRELET AND GUADALUPE MURRELET (SYNTHLIBORAMPHUS SCRIPPSI AND SYNTHLIBORAMPHUS HYPOLEUCUS)

CARA BORRE, 4613 Holly Ln NW, Gig Harbor, WA 98335, cmborre1@gmail.com.

Figure 1 Scripps’s Murrelet on a Westport Seabirds pelagic trip, Pacific County, 13 Sept 2020. (Photo by © Asta Tobiassen)

Figure 2 Guadalupe Murrelet at the Westport Marina, Grays Harbor County. 27 July 2019. (Photo by © Scott Ramos)

Scripps’s (S. scrippsi) and Guadalupe Murrelet (S. hypoleucus), formerly subspecies of Xantus’s Murrelet, received full species designation by the American Ornithologists’ Union in 2012. The split was based on a lack of evidence of interbreeding where the two are sympatric on the San Benito Islands, differences in morphology, vocalizations, and new genetic information.
Scripps’s and Guadalupe Murrelets nest in small colonies on islands off California and Baja California, Mexico. Their “nest”, really a scrape or less, is on the ground in caves or crevices, or under dense clumps of vegetation. Nesting is asynchronous and ranges from mid-February to early-July in the most studied species, Scripps’s Murrelet. Incubation averages 34 days and

![Figure 3: Scripp’s and Guadalupe Murrelets At-Sea Distribution.](Map by © U.S. Fish and Wildlife Service.)
shifts are shared equally between the sexes. As a group these murrelets are thought to form long term pair bonds and typically have a clutch of two highly precocial chicks who leave the nest with the parents at 2 days of age. Chicks do not possess the ability to fly at the time of nest departure. Under the cover of night, both parents take flight toward the sea calling to the walking chicks who follow. Dispersal continues via swimming, presumably vast distances, as it is not known at what age young are able to fly or leave their parents having gained the capacity to forage on their own (Murray et al. 1983, Eppley 1984). All murrelets are wing-propelled divers whose diet consists mainly of larval fishes such as anchovies, Pacific sauries, and rockfish (Hunt and Butler, Hunt et al.).

CONSERVATION STATUS POPULATION ESTIMATES

1. Scripps’s Murrelet is considered vulnerable (IUCN) with a breeding population of 4,000 - 6,600 birds. They breed on islands off southern California to the west coast of central Baja California, Mexico.

2. Guadalupe Murrelet is considered endangered (IUCN) with a breeding population of 1,200 - 4,900 birds. They breed on islands off the west coast of central Baja California, Mexico. Notably Guadalupe Island and the San Benito Islands.

Post breeding dispersal of Scripps’s Murrelet is largely to the north and further offshore to the west during the months of June through December. Unlike the near shore Marbled Murrelet (Brachyramphus marmoratus), Scripps’s Murrelet prefers the warm pelagic waters of the California Current (Briggs et al. 1987). Most sightings of Scripps’s Murrelet involve pairs of birds, even in nonbreeding season and throughout the nesting season, when 1 member of the pair is generally on the nest (Howell, Hunt et al.) This may reflect cooperative foraging by either mated pairs or “pairs” of unrelated birds. (Drost, Lewis).

Westport Seabirds regularly conducts wildlife viewing cruises into the offshore waters of Washington and remains the best opportunity to see Scripps’s Murrelet in the state. Scripps’s Murrelet has been documented annually in Washington, with the exception of 2015, since its designation as a full species in 2012 (Westport Seabirds). It has been found at the end of June through early-October in Washington, with peak sightings in the months of August and September. It is interesting to note that Ryan Merrill has independently documented 51 birds in September during WDFW surveys in 2016 and 2017 (eBird). These surveys were conducted considerably north and more importantly, further west over deeper continental shelf waters than Westport Seabirds is able to cover during a single day outing.

Guadalupe Murrelet’s post breeding dispersal follows the same general north and west pattern seen by Scripps’s, but this species is documented far less often than Scripps’s Murrelet throughout its range. Since the species split in 2012, there have been five accepted sightings of Guadalupe Murrelet in Washington and an additional accepted sighting from 2003, prior to the split. (WBRC). Similar to Scripps’s Murrelet, three of these sightings have involved pairs of birds together. While every sighting of Guadalupe Murrelet in Washington should be regarded as exceptional, a single bird found on
July 27, 2019 by Scott Ramos and Dave Swayne is truly remarkable as the bird was seen from land in the Westport Marina! Identification of Scripps’s and Guadalupe Murrelet is fairly straightforward if seen well on the water. Both birds have all black upperparts contrasting with white underparts. If seen from the front or side, the contrasting black head and dorsal neck from the snowy white chin, throat, and breast should recall no other suitable candidate offshore in Washington at the appropriate time of the year. When viewed from behind, birds commonly appear all black as they sit quite low on the water and may have their white undertail coverts submerged. The bill is medium sized and slender, slightly longer than Marbled Murrelet.

Differentiation of Scripps’s from Guadalupe Murrelet is best based on the amount of white on the face. While Scripps’s Murrelet has a small indentation or “comma” of white extending into the black surrounding the eye in the lower forward corner, Guadalupe sports much more white surrounding almost the entire eye including forward, behind, and below. Both birds may show white eye crescents above and below the eye. These white eye crescents further contrast a thin, partial ring of black “eyeliner” below Guadalupe Murrelet’s eye giving the bird a “big eyed” appearance. Scripps’s bill is slightly shorter and thicker than Guadalupe and both birds have white underwing coverts.

Far more common offshore in Washington, Cassin’s Auklet, may be confused with the pelagic murrelets. Cassin’s Auklet is slightly longer and decidedly chunkier in appearance than Scripps’s and Guadalupe Murrelets. It has a dark gray back fading to a surprisingly white belly when seen well in good lighting. The rounded head and short, stout bill of Cassin’s Auklet,
together with its light eye and thick, white eyebrow should aid differentiation of birds seen well on the water. Confusion is more likely as birds are observed from behind flying away from the approaching boat. Cassin’s Auklet has rounder wings and more of a side to side, twisting flight during take-off than the murrelets. Additionally, Cassin’s Auklet often appears to bounce off the water several times prior to becoming airborne while murrelets have the ability to leap into the air with little effort.

Marbled Murrelet is typically seen closer to shore than expected for Scripps’s and Guadalupe Murrelet. Marbled Murrelet in basic plumage, however, can be easily distinguished by the white slash along the scapulars absent from the all black-backed pelagic murrelets. Ancient Murrelet can be found offshore, but is usually easily distinguished by its gray upperparts, extensively black face and chin, and short, mostly pale bill.

Craveri’s Murrelet, though never seen and not expected in Washington, can be distinguished with difficulty from Scripps’s and Guadalupe by dark underwings and a dark, partial collar or spur extending onto the white breast. This spur can be seen both on the water and in flight. Craveri’s Murrelet often swims with its tail cocked up higher in the water than either Scripps’s or Guadalupe Murrelet showing more of the white undertail coverts. The bill is longer and slimmer than Guadalupe Murrelet.

Pelagic birders in Washington can look forward to a fair probability of a Scripps’s Murrelet sighting as they venture out from our coast with regularity in late June through the end of Westport Seabirds scheduled season. Guadalupe Murrelet remains a rare, much sought after species in Washington; a special treasure for those fortunate few who have added it to their life list, and a continued call to the sea for those of us still yearning to do so.

Figure 5: Guadalupe Murrelet on Westport Seabirds pelagic trip, Grays Harbor County, 27 Sept 2020. (Photo by © Ryan Merrill.)
REFERENCES

SPECIES ACCOUNT: ASHY STORM-PETREL
(HYDROBATES HOMOCHROA)

G. SCOTT MILLS, 6603 Sierra Dr Se, Lacey, WA 98503, millgs@aol.com.

As of June 2020, there are three accepted records for Ashy Storm-Petrel
(Hydrobates homochroa) in Washington waters. The first record occurred
on a Westport Seabirds trip on 24 June 2006 about 34 nm west of West-
port, Grays Harbor County. On the way back in from an “Outer Slope”
Westport Seabirds trip, spotter Bill Shelmerdine, who had been in the bow
of the boat with spotter Bruce LaBar, came to the back of the boat and
announced that they had an unidentified storm-petrel flying alongside the
boat. Not surprisingly, most of us in the back moved up to the front where
Bill pointed out the bird to us. My immediate impression was that the bird
was clearly neither a Fork-tailed Storm-Petrel nor a Leach’s Storm-Petrel,
numbers of which we had watched earlier in the trip at close range for
more than an hour at a chum-spot further west. The first things that stood
out to me were the wing shape and flight pattern, both of which appeared
to be intermediate between Fork-tailed and Leach’s Storm-Petrels. We all
noted that the bird appeared dark all over including the rump - either black,
dark-gray, or brownish gray depending on lighting conditions - similar to
Leach’s Storm-Petrel but very different from the pale gray Fork-tails. In the
first few seconds that I watched, the bird flew within a couple of feet of a
Leach’s Storm-Petrel and it appeared slightly smaller. Based on these initial
observations, we strongly suspected the bird had to be an Ashy Storm-Petrel.

Due to his excellent driving skills, Captain Phil Anderson managed to
follow the bird for more than 15 minutes, which provided time for extensive
observations, consultation with onboard bird guides, and discussion. During
this time, we noted the long-forked tail and the weak grayish carpal bars.
We were aware that Ashy Storm-Petrels had a distinct underwing pattern
but with the sun almost directly overhead, it was difficult to get a view of
the underwing and, on the occasions that we did, it was usually in shadow.
However, on several occasions, brief glimpses indicated that underwing the
covers were lighter than the rest of the wing, but I never got a clear look
at the exact pattern.

In contrast to today’s Westport Seabirds trips, where usually more than
80% of the people onboard have digital cameras with telephoto lenses, digital
.cameras were relatively uncommon in 2006. However, we were fortunate
easy to recognize several onboard, one owned by Truls Andersen from Nor-
way. During the long time that we followed the Ashy Storm-Petrel we had
Truls up on the bow taking photos. Examination of his photos onboard
showed all the critical field marks including a nice shot of the underwing pat-
tern. Despite all the time we had observing the bird at relatively close range,
the photos from the digital camera were critical to confirm the identification.

The second accepted Ashy Storm-Petrel Washington record occurred
on a NOAA Fisheries Research Cruise about 126 nm west of Westport on
6 April 2008. During bird surveys aboard the NOAA ship Miller Freeman
sponsored by NOAA’s Northwest Fisheries Science Center and conducted
by Terry Hunefeld and me, I spotted a dark storm-petrel about 150 meters from the port side of the ship. Since the bird appeared all dark, I assumed it would turn out to be a Leach’s Storm-Petrel, several of which we had seen earlier. However, when I looked at the bird through my binoculars, the wing shape and flight pattern did not look right for a Leach’s. We were headed west into the sun and lighting conditions were poor with a significant band of glare to port. For several minutes shape and flight pattern were the only useful clues to identification. The flight pattern was very different from Leach’s that we had observed earlier; despite relatively high winds, this bird was fluttering with almost constant wingbeats and very few, short glides whereas all the Leach’s we had seen previously were gliding with virtually no wingbeats. The more I watched, the more certain I became that this was an Ashy Storm-Petrel. After some time, the bird finally flew into better lighting conditions and I could discern that it was dark grayish brown with no white rump though the sides of the rump and the back looked a little lighter than the rest of the bird (as if “frosted”), that the tail looked long and forked, and that the wing-bars were narrow and very cold gray without any hint of the slight buff tinge shown by most Leach’s. Unfortunately, the bird flew back into the glare where it was eventually lost, and we were unable to get a photograph. The underside of the wing was never seen largely because we were looking down on the bird from the flying bridge, more than 35 feet above the water.

The third accepted Washington record occurred on a Westport Seabirds trip on 15 June 2019 about 35nm west of Westport. Captain Phil Anderson; four Westport spotters, Bill Tweit, Bruce Labar, Gene Revelas, and I; and nine Westport Seabirds customers had been at our chum spot in deep water in Gray’s Canyon for about 20 minutes when a dark storm-petrel finally appeared on the far side of the slick created by our chum. Up to this point we had had only Fork-tailed Storm-Petrels which was surprising because we have virtually always had Leach’s in this area at this time of year. Like all the spotters on board, I first assumed the dark bird was a Leach’s. As usual, our first reaction was to try to get our customers on the bird, and we were advising them to watch for the white rump, when we all noticed that the bird did not have a conspicuous white rump. Despite this, most of us were still thinking Leach’s. The day was overcast and because the bird was some distance away and only intermittently visible, it seemed possible that the rump was not clearly visible or that it was a dark-rumped Leach’s. During this time, I had a brief but clear momentary view of the underside of the extended wing and could see that the wing looked very narrow and there was a definite light “stripe” up the center of the wing. At that point I was about 98% convinced that we had an Ashy Storm-Petrel but there was enough doubt that the general consensus was that we should call the bird a “Storm-Petrel sp.” Unfortunately, no one had gotten photos.

After waiting and watching for more than 30 minutes, someone noticed a small dark storm-petrel at the back of the slick and we all got on it. Luckily, the bird flew closer and as it made a pass across the rear of the boat, we noted the flight pattern which consisted of steady, relatively shallow wingbeats. Examination of the many photos (including Figure 1) taken during this pass confirmed that the bird was an Ashy Storm-Petrel. All the characteristics of
Ashy, including the narrow wings, long forked tail, dark rump, pale grayish tones on the back and rump, pale underwing coverts, and narrow grayish carpal bars not reaching the forward edge of the wing could be seen. Storm-petrels at sea can be notoriously difficult to identify; differences are often subtle, lighting conditions are often poor, birds are often distant, and views are often intermittent due to sea conditions and the birds flight patterns (which vary with wind speed). Note that in all the above records conditions were such that birds could be viewed for extended periods of time and/or photos were available. A comparison of the subtle differences in shape and plumage between Ashy and Leach’s Storm-Petrels are shown in Figures 1 and 2.

Ashy Storm-Petrel is one of the least migratory of the regularly occurring U.S. Storm-Petrels. The northern limit of its normal range in northern California (Howell 2012) is about 300 miles south of the Washington records. Interestingly, Washington’s first accepted record for the species was more than a year before the first accepted Oregon record (ORBC 2020) though Howell indicates an Oregon record as early as 2005. As of 2020, there are ten accepted Oregon records with several records of multiple individuals (ORBC 2020). All the Washington records and five of the Oregon records are in April, May, or June and the other five Oregon records are in August, September, or October. Whether this distribution reflects actual patterns in distribution of the species or the distribution of pelagic trips is questionable.

With 13 accepted records for Ashy Storm-Petrel in Washington and Oregon since 2006, the obvious question is why there are no earlier accepted records. The two obvious answers are 1) that the birds have only recently
moved north and /or 2) a combination of increased sophistication in our collective knowledge, reference materials, and identification skills along with the more widespread use of digital cameras have allowed conclusive identification of birds that would have previously been undetected. The relative merit of each of these answers is a subject for much inconclusive debate but given the current status of the species and the extremely limited coverage of pelagic waters, it seems unlikely that Ashy Storm-Petrel will ever be considered more than casual in Washington, though I suspect that it probably occurs as a rare but regular visitor.

LITERATURE
The Crested Caracara has been described as “distinctive” in both appearance and ecology (Morrison and Dwyer 2020). Birders who are fortunate to have seen this interesting raptor agree the description is appropriate (Figure 1). The species is non-migratory, with breeding populations from the southern United States to northern South America, and although often considered as having a vulturesque lifestyle is better characterized as opportunistic and a dietary generalist (Morrison and Dwyer 2020). With this life history, and strong association with open, southern grasslands, its occurrence in the Pacific Northwest is striking. In this article I update the sighting history for Crested Caracara in Washington and examine regional records to better understand reasons for the species to occur well outside its known breeding range.

There are currently four records of Crested Caracara in Washington accepted by the WBRC (Washington Ornithological Society 2020) near Ocean Shores (1983), Neah Bay (1998), Oakville (2006), and Skykomish (2015) (Figure 2). An additional record near Westport in 1936 was discounted because it was believed to have been an escaped bird (Anderson and Shiftlett...
Figure 2: Confirmed records of Crested Caracara in the Pacific Northwest, 1998-2015. The 1936 record was believed to be an escaped individual. The Smith River Delta in northern California is the location of multiple records over multiple years.

Figure 3. Monthly records of Crested Caracara in the Pacific Northwest at variable latitudes recorded between 1998 and 2015 (n = 16). Black symbols are Washington records.
1998, Wahl et al. 2005), a designation given to many of the earliest records of this species outside of its range (Morrison and Dwyer 2020).

Two interesting aspects of these records are the association of this species with both coastal/estuarine areas or associated tributaries in forested areas, and the fact that the sightings by different observers over a period of days ended abruptly. The exception was the bird at Neah Bay that was likely seen 4 months later and 24 km distant (Wahl et al. 2005). Association with non-grassland habitats is also consistent for most official records of Crested Caracara documented between 1998 and 2015 in Oregon (n = 8; Oregon Birding Association 2020) and British Columbia (n = 4; British Columbia Field Ornithologists 2020) (Figure 2). Like the Washington records, these individuals were not known to have been resighted over multiple years. Their occurrence spanned all months of the year even at higher latitudes, although 88% of the 16 records were between March and September (Figure 3). The nearest confirmed repeated sightings of the same caracara over multiple years have been recorded in the delta of the Smith River (Figure 2), in northern-most California, with multiple resightings southward along coastal California (Nelson and Pyle 2013).

Avian vagrancy is most often associated with migratory populations and birds in their first year but also may result from “population growth or expansion, with vagrants being noticed because populations are larger or breeding closer to the area concerned” (Newton 2008). The non-migratory status and mixed age classes of Crested Caracara in the Pacific Northwest best fit the latter definition, and the species has shown range expansion in the south and southwest with increasing vagrancy (Morrison and Dwyer 2020). California, located between these breeding populations and the Pacific Northwest, has no historical record of breeding Crested Caracara (Grinnell and Miller 1944), but a more recent assessment of 49 accepted records of the California Birds Records Committee concluded the species as naturally occurring within the state based on at least 11 different individuals sighted repeatedly over multiple years (Nelson and Pyle 2012). Thus, Crested Caracaras are exhibiting residency as far north as northern California.

The coastal association of Crested Caracaras is consistent with movement patterns of other vagrant birds expanding from Mexico to California (Nelson and Pyle 2012) and the relationship of Crested Caracara with marine, estuarine, and riverine habitats in the Pacific Northwest is not surprising considering the species feeds on live and dead aquatic animals (Morrison and Dwyer 2020). The ephemeral nature of records for Crested Caracara north of California suggests current conditions are inadequate for year-round occupancy, although the probability of resighting individuals is probably confounded by forested habitats and a relatively lower density of birds. Also, when vagrants occupy unfamiliar habitats, they may experience high mortality, particularly young birds (Bloom et al. 2011). Future increases in temperature and reduced precipitation from climate change may expand northward residency of individuals but whether conditions will ever promote nesting of Crested Caracara in the Pacific Northwest will be an investigative endeavor left to the next generation of birders. Toochin and Cecile (2016) noted that records of Crested Caracara along the coast were not clearly linked to warmer years due to effects of El Niño.
LITERATURE CITED

examination of the records. WOSNews 53:1-7.
Vagrant Western Red-Shouldered Hawks: origins, natal dispersal patterns, and
survival. The Condor 113:538-546.
British Columbia Field Ornithologists. 2020. BC Bird Records Committee Sighting
Grinnell, J., and Miller, A. H. 1944. The distribution of birds of California. Pacific
Coast Avifauna 27:1-608.
Morrison, J. L., and Dwyer, J. F. 2020. Crested Caracara (Caracara cheriway), version
1.0. In Birds of the World (A. F. Poole, Editor). Cornell Lab of Ornithology,
Ithaca, NY, USA. https://doi.org/10.2173/bow.crecar1.01
Crested Caracaras in California. Western Birds 44:44-45.
oregonbird.org/oregon-bird-records-committee (accessed July 28, 2020)
Toochin, R., and Cecile, D. 2016. Status and Occurrence of Crested Caracara
(Caracara cheriway) in British Columbia. [E-fauna BC online articles]
http://ibis.geog.ubc.ca/biodiversity/efauna/documents/CRCA-article-RT-DC
(accessed July 28, 2020)
State Univ. Press, Corvallis.

ACKNOWLEDGEMENTS

Thanks to Ed Swan for providing historic records and review of this manuscript,
and to Doug Schurman and Sierra Downes for sharing their photos.
SPECIES ACCOUNT: YELLOW-BELLIED FLYCATCHER (EMPIDONAX FLAVIVENTRIS)

MICHAEL WOODRUFF, 2902 N Stone St, Spokane, WA 99207; mkd.woodruff@gmail.com. WOS member.

On 30 August 2009, Craig and Judy Corder and I attempted to chase the Dennys’ Black-tailed Gull at the Walla Walla River Delta. Unsuccessful in that regard, we headed for some migrant traps, birding first at Windust Park in Franklin County. Birds and especially empids were all over the place, and we got on one particular bright flycatcher that we decided was a Least Flycatcher. The views were very close, but brief, and luckily I obtained a string of nice close-up photos. I posted the photos to flickr as a Least Flycatcher. This bird showed a unique brightness with a green-olive back and yellow underparts, bold and even eye-ring, pale lower mandible with a bill that was moderately wide. At the time I remember thinking that it didn’t fit well with any of the western empids. I had not seen very many Leasts and felt it was potentially a good match.

A full month went by and then I received an email from Charlie Wright, who wrote that he kept coming back to the photos and was thinking more and more that it must actually be a Yellow-bellied Flycatcher. I was stunned initially, as this bird was nowhere on my radar – at that point in my birding I had not yet seen one, did not remember that they turn up very occasionally along the west coast, and knew nothing about the fine points of identification.
SPECIES ACCOUNT: YELLOW-BELLIED FLYCATCHER

Charlie sent an email to Steve Mlodinow who responded matter-of-factly, “This is a Yellow-bellied Flycatcher.” Ted Floyd and Michael Retter soon got involved and also supported this ID. Ted wrote, “I’m fine with it being a Yellow-bellied (overall shape, tail length, wing length, overall color/brightness, eye ring structure, head structure).” Michael added very succinctly “There’s absolutely no question in my mind that this is a YBFL.” Months later in March 2010, it was accepted by the WBRC as Washington’s first Yellow-bellied Flycatcher.

Yellow-bellied Flycatcher identification is typically possible with close photos. Like any Empidonax species of course, some birds are left unidentified, but this bird exhibited several features that led to the acceptance to the state list. It was easily apparent that it was not a Dusky or a Hammond’s due to the bright coloration, larger and very pale bill, eye-ring shape, and general structure. Western Flycatcher would have a noticeable crest and an obvious “tear-drop” eye-ring while this bird’s eye-ring is very uniform. Least Flycatcher would actually be less bright, with gray tones to the plumage, and often show a supraloral paleness, not seen on this bird. This bird’s bill is a bit larger and even paler than a Least’s.

Yellow-bellied Flycatcher is a very scarce vagrant to the West Coast. California certainly has the bulk of the records, with thirty accepted records. Nevada has one eBird record and Utah has one, while Arizona has two. Apart from far northeastern Montana, which is a mecca for eastern species, that state has only one record. Idaho and Wyoming are awaiting their state firsts. Last year Oregon welcomed its first Yellow-bellied Flycatcher with an individual photographed in Harney County on 16 September 2020. The bulk of these records in the West have occurred during fall migration.

Figure 2: Yellow-bellied Flycatcher at Windust Park, Franklin County on 30 August 2009. (Photo by © Michael Woodruff.)
This birding experience brings up mixed emotions. It is certainly the rarest bird I have ever found and was even featured in “Birding” magazine. In this regard it was exhilarating! Yet the excitement of finding this bird was blunted with the embarrassment of missing the ID for a whole month. I’m grateful to Charlie for taking those extra looks. I do not like to make mistakes. Like most birders I hold myself to a very high standard, and a misidentification hurts on a deep level. I remind myself with experiences like this to stay humble, always keep learning, and to always be on the lookout for the next vagrant. Birding is an incredible sport with ups and downs. I’m certainly grateful for this experience.

REFERENCES:

SPECIES ACCOUNT: LAWRENCE’S GOLDFINCH
(SPINUS LAWRENCEI)

BRAD WAGGONER, 7865 Fletcher Bay Rd. NE, Bainbridge Island, WA 98110; wagtail24@gmail.com. Washington Bird Records Committee member, WOS member.

Figure 1: Lawrence’s Goldfinch at Keyport, Kitsap County 20-21 May 2012. Second record for Washington State. (Photo by © Brad Waggoner.)

Observant homeowners looking out on their bird feeder areas have been the first to note a couple of the very rare vagrant seed-eating passerines to show up in the state of Washington. Often in such cases, the feeder-watch individual is an inexperienced birdwatcher but is keenly aware of the expected common visitors to his or her yard. The rare visitor, showing traits not at all familiar, sends these individuals into action to determine the identity of this strange visitor. Fortunately, identifiable photographs have been obtained and queries sent out to other known birder friends, experts, or placement of the sighting into eBird or a WOS rare bird form, leading to the rare visitor being positively identified and documented. Two species that specifically come to mind in this scenario are Little Bunting and Lawrence’s Goldfinch. To date, the bunting has been recorded once and the goldfinch has been recorded two times in our state.
The first Washington State record for Lawrence’s Goldfinch occurred on 2 May 2011 in Friday Harbor, San Juan County. A male was observed on the ground with other finches coming to bird seed along a fence line. It was a one day-wonder, but the observant homeowner noted the striking and lovely plumage pattern of this strange, visiting goldfinch. Photographs were obtained and identification help from a local expert birder was sought out. Incredibly, a short year later, under a similar set of circumstances Washington’s second record for this species went into the books. Again, another male was noted by an observant feeder-watcher, this time coming to a hanging feeder outside the kitchen window.

This second state record for Lawrence’s Goldfinch occurred near Keyport, in Kitsap County, and the bird hung around for two days, May 20 and May 21. In this particular case, the record was noted by a local eBird reviewer as the homeowners had placed their sighting of it in eBird. I was truly fortunate to be one of the few to observe and photograph this very rare visitor coming within my home-turf Kitsap County. Fortunately, the volunteer position of bird record-keeper or eBird reviewer brings along the occasional fringe benefit of a rare bird viewing invite. With the backyard feeder only visible from the kitchen window and the home within a private development, permission for birder viewing for the general birding community was just not feasible or realistic given obvious privacy and neighborly issues.

Figure 1: Lawrence’s Goldfinch at Keyport, Kitsap County on 20-21 May 2012. Second record for Washington State. (Photo by © Brad Waggoner.)
SPECIES ACCOUNT: LAWRENCE’S GOLDFINCH (SPINUS LAWRENCEI)

Lawrence’s Goldfinch breeds in open oak grasslands or riparian corridors of dry foothills and mountain valleys of California. Though known for erratic fall and winter movements to the southeast of its breeding range into southeast Arizona, southwest New Mexico, and casually into west Texas, records north of their historic California breeding range do not coincide with the timing of these fall movements. Oregon has 15 records, with most occurring April through June. A July 2019 report of a male with four juveniles in Josephine County established the first breeding record for Oregon. British Columbia is yet to record this species.

LITERATURE:

Scarlet Tanager on Camano Island, Island County 5 June 2020
(Photo by © Julie Conzelmann.)
ELEVENTH REPORT OF THE WASHINGTON BIRD RECORDS COMMITTEE (2014–2016)

This report appeared first in Western Birds 50: 202-231, 2019 and is reprinted with the permission of Western Birds.

RYAN J. MERRILL, 13039 6th Ave NW, Seattle, Washington 98177; rjm284@gmail.com, Washington Bird Records Committee member and WOS member.

CHARLIE WRIGHT, 1005 N 36th St #2, Seattle, Washington 98103; cwright770@gmail.com, Washington Bird Records Committee member and WOS member.

MATT BARTELS, 611 N 50th St. Seattle, Washington 98103; mattxyz@earthlink.net, Washington Bird Records Committee member and WOS member.

ABSTRACT: Since its tenth report (Mlodinow and Bartels 2016) the Washington Bird Records Committee has reviewed 318 reports representing 98 species and six subspecies. A total of 225 reports were endorsed, an acceptance rate of 72%. Eight species and one subspecies were added to the Washington state checklist: the Broad-billed Hummingbird (Cynanthus latirostris), Spotted Redshank (Tringa erythropus), Least Auklet (Aethia pusilla), Woodhouse’s Scrub-Jay (Aphelocoma woodhouseii), Red-flanked Bluetail (Tarsiger cyanurus), Gray Wagtail (Motacilla cinerea), Little Bunting (Emberiza pusilla), Lucy’s Warbler (Oreothlypis luciae), and the Siberian subspecies of the American Pipit (Anthus rubescens japonicus). In addition, the decision to treat the Iceland (Larus glauoides sensu stricto) and Thayer’s (L. thayeri) gulls as a single species, under the name of Iceland Gull (L. glauoides sensu lato), reduced the state bird list by one. The Washington state list now stands at 514 species.

This 11th report of the Washington Bird Records Committee (WBRC) is the result of the deliberations of the WBRC from February 2014 through October 2016, during which time 318 reports were evaluated. These include 314 new reports of 98 species and six subspecies. Most reports were from late 2013 into 2016, though 28 were from earlier years, as far back as 1976. Two reports had already been reviewed by the committee and were revisited in light of recent taxonomic changes; an additional two previously accepted records were augmented with accepted reports from later years. Of the 314 new reports, 225 were accepted, resulting in an acceptance rate of 72%. Six reports, one each of the Black-bellied Whistling-Duck (Dendrocygna autumnalis), Ruddy Shelduck (Tadorna ferruginea), and Long-tailed Mockingbird (Mimus longicaudatus), and three of the European Goldfinch (Carduelis carduelis), were not accepted because of concerns regarding the birds’ origin. The remaining 85 reports were not accepted because of insufficient documentation. Among the accepted records were those of eight species new for Washington. Furthermore, the taxonomic changes in what was heretofore the Shy Albatross (Thalassochara cauta sensu lato) resulted in that species being split into three species, only one of which, the White-capped Albatross (T. cauta sensu stricto), is on the Washington list. Taxonomic changes also resulted in the lumping into a single species, the Iceland Gull (Larus glauoides sensu lato), of what was heretofore known as the Iceland (L. glauoides sensu stricto) and Thayer’s (L. thayeri) gulls.
Additionally, the WBRC accepted one record of a subspecies new to the state: the Siberian American Pipit (*Anthus rubescens japonicus*).

In 2014, Scripp’s Murrelet (*Synthliboramphus scrippsi*) (19 records) was removed from the list of species the WBRC reviews. Reports of the Cattle Egret (*Bubulcus ibis*) and Little Gull (*Hydrocoloeus minutus*) were accepted for the first time since these species were added to the review list.

PROCEDURES

The WBRC’s procedures are consistent with those detailed in the introduction to the its first report (Tweit and Paulson 1994), expanded on in the introduction to the sixth report (Mlodinow and Aanerud 2006), and repeated most recently in the tenth report (Mlodinow and Bartels 2016).

Species accounts begin with English and scientific names, followed, in parentheses, by the total number of records for Washington and the number of records accepted in this report. An asterisk following the total number of records indicates that the species has been reviewed for a restricted period of time, so the number does not represent the total number of accepted records for the state. Each entry includes the following information: location and county of observation, date span, and (for accepted records) initials of the observer(s). To aid with record-keeping and future reference, each report includes a unique file number consisting of the species’ four-letter code, year of the sighting, and entry number, determined by the order in which the committee received the report. Four-letter codes are based on those used by the Institute for Bird Populations, with occasional modifications for forms not covered by that source (Pyle and DeSante 2018). For the sake of brevity, in the species accounts, the four-letter code is omitted from file numbers after the report mentioned first. The initials of the observers who submitted only written descriptions are by convention listed first, followed by those who submitted photographic, video, or audio documentation. The discoverer of the bird is listed only if that person contributed evidence for the committee’s review. Additional information such as the number of birds present and notes on sex, age, and/or plumage are included when possible but do not reflect a formal decision made by the committee. For reports not accepted, observers are not listed but the committee’s vote is included (“votes to accept”—“votes not to accept”—“abstentions”).

COMMITTEE MEMBERS

The WBRC is a committee of the Washington Ornithological Society. Committee members during the period covered by this report were Shawneen Finnegan, Ryan Merrill, Steve Mlodinow (until 2015), Ryan Shaw, Dave Slager (from 2014), Bill Tweit, Brad Waggoner (chair), and Charlie Wright. Dave Slager joined the committee in 2014, replacing Bill Tweit. Bill Tweit re-joined the committee in 2015, replacing Steve Mlodinow. Matt Bartels (nonvoting) was the secretary throughout the period.

Washington Birds
THE RECORDS

Reports Accepted by the Committee

Bewick's Tundra Swan (*Cygnus columbianus bewickii*) (18*, 3). One was at Steigerwald Lake National Wildlife Refuge (NWR), Clark Co., 25 Jan 2015 (BESW-2015-1; photo: SRu). Another was in Dodge Valley, Skagit Co., 27 Nov 2015 (2015-1; photos: EvH, RJM). One more was near Lynden, Whatcom Co., 14 Feb 2016 (2016-1; photo: PC). Since review of this subspecies began in 2003, all records but one have been from western Washington.

King Eider (*Somateria spectabilis*) (18, 3). A female was spotted from Dungeness Spit, Clallam Co., 12 Jul 2014 (KIEI-2014-1; photo: CA), representing only the second record for Washington in summer. Another female was found in Commencement Bay, Tacoma, Pierce Co., 4–29 Nov 2015 (2015-1; photos: BrB, MCh, TM, GO, OO, CRI, DSc, GTh). A first-year male was off Anacortes, Skagit Co., 2–3 Jan 2016 (2016-1; photos: RJM, DSc, JWa, JWg, KWg). Thirteen of Washington’s King Eiders have occurred between October and February, three in April or May, and two in July.

Eurasian Collared-Dove (*Streptopelia decaocto*) (23*, 1). One long-tabled report from College Place, Walla Walla Co., 11 Jan 1996 (EUCD-1996-1; photo: MDe) was accepted during this period. It now represents Washington’s first record, preceding the next by four years, and exemplifying the species’ well-demonstrated and successful mode of invasion, known as jump dispersal (Romagosa and McEneaney 1999). Reports of the Eurasian Collared-Dove were reviewed by the committee from 2000 until 2006, when the species became widespread and numerous.

White-winged Dove (*Zenaida asiatica*) (13, 3). One was photographed in Renton, King Co., 17–18 May 2015 (WWDO-2015-1; photos: LiB, WBo). One was found in Neah Bay, Clallam Co., 16–17 Apr 2016 (2016-1; photo: RJM). Another was found in Lynnwood, Snohomish Co., 29 Apr 2016 (2016-2; photo: MR). Nine of Washington’s 13 White-winged Dove records fall between April and June, and all sightings but two are from west of the Cascades.

Yellow-billed Cuckoo (*Coccyzus americanus*) (12*, 1). One was discovered along the Big Valley Trail, Mazama, Okanogan Co., 4 Jun 2015 (YBCU-2015-1; audio: VG, LiS). Although a breeding bird in the region in the early 20th century, the Yellow-billed Cuckoo’s decline has been drastic enough that in 2014 its western population received federal protection as a threatened species under the Endangered Species Act (FWS 2014). Loss of riparian habitat was the primary factor cited for the decades-long decline (FWS 2014, Laymon and Halterman 1987). This is only the second record for Washington in 15 years. Oregon has had five records over the same period (Hertzel 2019). Since 1979 all of Washington’s records but one have been in the summer months of June or July.

Costa’s Hummingbird (*Calypte costae*) (14, 3). The three records all were of adult males between March and May 2014 in Clark County. Two were in Vancouver, the first 23 Mar–1 Apr 2014 (COHU-2014-1; photos: JCa, AnA), the second 26 Apr–1 May 2014 (2014-2; photo: GC). A third appeared in Washougal 9–10 May 2014 (2014-3; photo: GF). These reports are treated as separate records because of the spatial and temporal gaps between sightings, but there is the possibility that...
Some or all of them involve the same bird or birds. All 14 of Washington’s Costa’s Hummingbirds have occurred since 1989. Ten have appeared in western Washington, while four have been in eastern Washington’s Klickitat County. All but three of the state’s records are for the period from late March to May.

Broad-billed Hummingbird (*Cynanthus latirostris*) (1, 1). Washington’s first, an immature male, was in Carson, Skamania Co., 25–26 Oct 2014 (BBLH-2014-1; MtB, photo: Msr). A bird of central and western Mexico and the southwestern United States, it has appeared as a vagrant as far from its normal range as Ontario in 1989 (Wormington and Curry 1990), Massachusetts in 2008 (Rines 2009), and many places in between. In the Northwest, Oregon has two records, both from fall (Hertzel 2019), and Idaho has a single May record (Idaho Bird Records Committee [IBRC] 2019).

Lesser Sand-Plover (*Charadrius mongolus*) (5, 2). One in basic plumage was at Bottle Beach, Grays Harbor Co., 7 Sep 2013 (LSAP-2013-2; photo: BT). An adult male beginning prebasic molt was at Ocean Shores, Grays Harbor Co., 16–22 Aug 2015 (2015-1; photos: Bbn, TBo, KCa, MCh). All five of Washington’s Lesser Sand-Plovers have occurred since 2010, and all have been on the outer coast between mid-August and the first week of September.

Mountain Plover (*Charadrius montanus*) (6, 1). An immature visited Ocean Shores, Grays Harbor Co., 8–15 Nov 2014 (MOPL-2014-1; photo: MCh). Washington has one spring record; the remaining five extend from November to February.

Upland Sandpiper (*Bartramia longicauda*) (8*, 2). An immature bird was at Ocean Shores, Grays Harbor Co., 6–7 Sep 2013 (UPSA-2013-1; CB, CRi, RoS, photos: SSc, AT; Figure 1). Another flew over at Hobuck Beach, Clallam Co., 13 Sep 2013 (2013-2; audio: DVH). These were the first Upland Sandpipers in Washington in over a decade. The species was added to the review list in the 1990s (Tweit and Skriletz 1996) after the state’s small remaining breeding population was apparently

![Figure 1. Washington’s first Upland Sandpiper (UPSA-2013-1) in a decade, a juvenile, was at Ocean Shores, Grays Harbor Co. 6–7 Sep 2013 (photo 6 Sep 2013). (Photo by © Åsta Tobiassen.)](image-url)
extirpated around 1993 (Wahl et al. 2005). A similar steep decline has been noted in Oregon (Marshall et al. 2003).

Bar-tailed Godwit (*Limosa lapponica*) (52*, 1). In the final decade before it was removed from the review list in 2008, 34 reports of the Bar-tailed Godwit were accepted and a regular pattern of occurrence in Washington was confirmed. One report, tabled after initial debate, was inadvertently not reconsidered until this period, of an immature at Leadbetter Point, Pacific Co., 25 Aug 1990 (BTGO-1990-1; NL).

Red-necked Stint (*Calidris ruficollis*) (7, 2). As with past records, both new sightings were of adults in alternate plumage, found between late June and early August. One was found along Yukon Bay, Kitsap Co., 5 Jul 2015 (RNST-2015-1; photo: CH), another at Sand Point, Olympic National Park, Clallam Co., 7 Aug 2015 (2015-2; DPa).

White-rumped Sandpiper (*Calidris fuscicollis*) (8, 1). One was along Dodd Road, 6 km north of Wallula, Walla Walla Co., 21 May 2016 (WRSA-2016-1; photo: KDE). All five White-rumped Sandpipers previously recorded in eastern Washington occurred between 20 May and 19 June, while the three from west of the Cascades occurred between 7 July and 1 August.

Spotted Redshank (*Tringa erythropus*) (1, 1). The first record for Washington was of a bird in nonbreeding plumage spotted independently by two observers on Fir I., Skagit Co., 27 Nov and 1 Dec 2014 (SPRE-2014-1; JBy, GR). Though neither observer was able to obtain photographic documentation, the descriptions were detailed and persuasive enough for the WBRC to add the Spotted Redshank to the state list on the basis of a sight record. Along with two records from Oregon in 2012 and 2015 (Hertzel 2019), this is one of only three records of this species from the Pacific coast of North America south of Alaska since 1990.

Thick-billed Murre (*Uria lomvia*) (24, 4). One in alternate plumage was seen off Point Brown Jetty, Ocean Shores, Grays Harbor Co., 1 Nov 2013 (TBMU-2013-1; BSh). One in alternate plumage was in Discovery Bay, Jefferson Co., 17–24 Dec 2013 (2013-2; JGa). One transitioning into alternate plumage was above Grays Canyon, 105 km off Westport (46.9° N, 125.5° W), Grays Harbor Co., 25 Jan 2014 (2014-1; BT, photos: RSh, BWa). One in alternate plumage was found alive but stranded on Hobuck Beach, Clallam Co., 20 Jun 2014 (2014-2; photo: HV). This June record represents the first summer sighting of the Thick-billed Murre in Washington. Additionally, after being at Ediz Hook, Port Angeles, Clallam Co., 30 Dec 2012–2 Mar 2013 (Mlodinow and Bartels 2016), one in basic plumage was there again 28 Dec 2013–2 Feb 2014 (BBo, CRi) and 3–20 Jan 2015 (BBo, photo: RJM). With three consecutive winters of similar reports at the same location, the committee considers all to represent the same bird (2012-2).

Long-billed Murrelet (*Brachyramphus perdix*) (11, 2). One in alternate plumage was observed from the Edmonds Marina, Snohomish Co., 25 Aug 2013 (LBMU-2013-1; TH, TP). Another, in nonbreeding plumage, was spotted off Shark Reef Preserve, Lopez I., San Juan Co., 27 Jul 2015 (2015-1; photo and video: RJM). Seven of Washington’s 11 Long-billed Murrelets have been recorded in July or August, a pattern that resembles the species’ status in Oregon (Hertzel 2019) and California (Hamilton et al. 2007, Tietz and McCaskie 2019).

Scripp’s Murrelet (*Synthliboramphus scrippsi*) (19*, 6). Five records of nine individual birds came from roughly the same area above Grays Canyon, Grays Harbor Co. Two were found at the north end of Grays Canyon, 46 km west of Ocean City (47.1° N, 124.8° W), 7 Sep 2013 (SCMU-2013-6; BT, photo: DSc). At the same point 27 km west of Westport (46.9° N, 124.5° W), one was found 19 Oct 2013 (2013-7; BT, photo: DSc), two were found 12 Jul 2014 (2014-1; photos: JAn, RJM),
and two more were found 6 Sep 2014 (2014-3; photos: MDo, DLr, GSM). Two were found 60 km off Westport (47.0° N, 125.0° W) the next day, 7 Sep 2014 (2014-5; JiD, photos: SHA). One additional Scripps’s Murrelet was reported farther south, 54 km off Ocean Park over Willapa Canyon, Pacific Co. (46.6° N, 124.8° W), 31 Aug 2014 (2014-2; JAn).

With 19 reviewed and accepted records of murrelets identified as Scripps’s, 14 accepted as Scripps’s/Guadalupe murrelets, and a number of unsubmitted reports from research vessels that the committee believes to be credible, Scripps’s Murrelet’s presence as a regular visitor off Washington’s coast is established. All sightings but one are from 29 June through 19 October; only one December specimen falls outside this range. This pattern matches the pattern of post-breeding dispersal noted elsewhere along the Pacific coast (Lehman 2016). As a result of the species’ regularity, the committee removed Scripps’s Murrelet from its review list in 2014.

Guadalupe Murrelet (*Synthliboramphus hypoleucus*) (2, 1). One spotted over Grays Canyon, Grays Harbor Co., 1 Aug 2015 (GUMU-2015-1; RJM) is only the second Guadalupe Murrelet reviewed from Washington, though the committee is aware of published but unsubmitted reports from when it was considered a subspecies. These include three pairs studied at close range 64 km off Westport, Grays Harbor Co., 11 Sep 1978 (Hunn and Mattocks 1979, Wahl et al. 2005) and two birds 66 km west of Leadbetter Point, Pacific Co., 6 Sep 2001 (Mlodinow et al. 2002, Wahl et al. 2005).

Scripps’s/Guadalupe Murrelet (*Synthliboramphus scrippsi/hypoleucus*) (5, 1). One on the ocean over Willapa Canyon, Pacific Co., 28 Sep 2014 was seen well enough for Craveri’s Murrelet (*S. craveri*) to be eliminated, but not well enough for the Guadalupe and Scripps’s Murrelets to be distinguished (SCMU-GUMU-2014-6; GSM).

Least Auklet (*Aethia pusilla*) (1, 1). Washington’s first Least Auklet, in alternate plumage, was found dead (specimen not preserved) by surveyors with the Coastal Observation and Seabird Survey Team (COASST) on Cohasset Beach, Westport, Grays Harbor Co., 25 Jun 2016 (LEAU-2016-1; photo: MSc, fide CWr). A similar discovery took place on 15 June 1981 on a beach in San Mateo Co., California, of a bird that was alive when found but soon expired (Bailey 1989). These two plus two recent reports from British Columbia waters (Lehman 2016, British Columbia Bird Records Committee 2019) represent the extent of the species’ known occurrence south of Alaska.

Red-legged Kittiwake (*Rissa brevirostris*) (12, 3). A first-year bird was 100 km due west of Seaside, Oregon, but just inside Washington waters at 46.0067° N, 125.2710° W, Pacific Co., 24 Sep 2013 (RLKI-2013-1; photo: EBo). An adult in alternate plumage appeared for one day in Neah Bay, Clallam Co., 8 Sep 2015 (2015-1; photos: BWa, CWr). An adult in basic plumage was found after a winter storm 70 km inland from Puget Sound at Snoqualmie Pass, King Co., 18 Nov 2015 (2015-2; photo: RHa, fide CA). The September and November records bridged a gap in previous records that extended from mid-August to early December.

Black-headed Gull (*Chroicocephalus ridibundus*) (21, 3). An adult in basic plumage was at South Bend, Pacific Co., 28 Oct–5 Nov 2014 (BHGU-2014-2; photos: JiD, RFl). Two more appeared near each other at Crescent Lake, Snohomish Co.: one 1–6 Feb 2016 (2016-1; MBr, photos: CC, WF, VS), and another 2 Feb–22 Mar 2016 (2016-2; MBr, photos: JAd, JGl, JGu, TM, RJM, GO, OO, JRo, DSc, MTn, GTh, ST).
Little Gull (*Hydrocoloeus minutus*) (2*, 2). In 2011, after noting several years of very few sightings, the committee placed this species on the review list. The first record to be reviewed was of a first winter bird at Point-No-Point, Kitsap Co., 6–13 Oct 2013 (LIGU-2013-1; MtB, photos: GOl, OO, video: CB). An adult in basic plumage was spotted at Jensen Access on Fir I., Skagit Co., 24 Oct 2014 (2014-1; photos: EvH, RJM).

Laughing Gull (*Leucophaeus atricilla*) (8, 1). A second-cycle bird at Bottle Beach, Grays Harbor Co., was first reported on 20 May 2016, and presumably the same bird was seen there again from 20 Jul to 16 Aug 2016 (LAGU-2016-1; May sighting photo: JRT; July–August sighting photos: CB, SG, MiH, GMa, TM, BWa).

Vega Herring Gull (*Larus argentatus vegae*) (4*, 2). One in its first cycle was at Three Crabs, Dungeness, Clallam Co., 26 Oct 2013 (HERG-2013-1; BWa, photos: RJM, RSh). Another, also in its first cycle, was found in the Wa’atch River valley, Neah Bay, Clallam Co., 24 Oct 2014 (2014-1; photos: RJM, SM).

Iceland Gull *sensu stricto* (*Larus glaucoides glaucoides/kumlieni*) (29, 10). Prior to publication of the 58th supplement to the *Check-List of North American Birds*, the Thayer’s and Iceland (*sensu stricto*) gulls were treated as separate species. Subsequently, they are being considered conspecific (Chesser et al. 2017). During the period under consideration in this report, the WBRC reviewed reports of purported Iceland Gulls (*sensu stricto*), which we summarize here without respect to subspecies *glaucoides* versus *kumlieni*. One in its second cycle was in Tacoma, Pierce Co., 23 Dec 2004 (ICGU-2004-2; SM). A first-cycle bird was at the Colville Flats, Stevens Co., 12 Nov 2013 (2013-5; photo: JI). An adult was at Hobuck Beach, Clallam Co., 27 Oct 2013 (2013-7; photos: RJM, SM, RSh, Bwa). A first-cycle bird was at Hobuck Beach and Neah Bay, Clallam Co., 27 Oct–3 Nov 2013 (2013-8; photos: CH, FL). Another in its first cycle was at Howard Miller Steelhead Park, Skagit Co., 29 Oct 2013 (2013-9; photo: RJM). An adult was at Swallows Park, Clarkston, Asotin Co., 18 Jan–21 Feb 2014 (2014-1; photos: Kca, MCl, DGr, RSh). Another adult was along Goodrich Road, Centralia, Lewis Co., 1 Feb 2014 (2014-2; BSh, photo: BT). An adult in basic plumage was at Neah Bay, Clallam Co., 13 Dec 2015 (2015-2; photo, video: RJM). A first-cycle bird was near Bateman I., Benton Co., 11 Feb 2016 (2016-1; photo, video: RJM). A second-cycle bird was at the Elwha River mouth, Clallam Co., 20 Feb 2016 (2016-2; BBo).

Slaty-backed Gull (*Larus schistisagus*) (21, 4). An adult was at the Gog-le-hi-te Wetlands, Tacoma, Pierce Co., 29 Oct 2010 (SBGU-2010-1; photo: MCh). An adult first reported from the same location in 2012 (2012-1, Mlodinow and Bartels 2016) returned for four subsequent winters and was accepted as continuing instances of the same record. Its confirmed dates are 8 Oct–23 Dec 2012 (photos: RBj, MCh, HDG, ZH, CH, JI, OO, SRa, DSc, MWh), 25 Aug 2013–25 Jan 2014 (MtB, photos: MCh, EvH, GOl, OO, MP, DSL, JSw), 18 Aug 2014–17 May 2015 (photos: MCh, GP, ASe, GTh), 29 Aug 2015–21 May 2016 (photos: MCh, DSc), and 20 Jul 2016–9 Feb 2017 (photos: BBn, LuB, MCh, BLB, GP, BPe, ST). Another adult was at the Cedar River mouth in Renton, King Co., 22 Dec 2013 (2013-2; MtB, CWr, photo: RJM). A second-cycle bird was at the Wa’atch River mouth, Clallam Co., 26 Oct–1 Nov 2014 (2014-2; photos: RJM, SM, RSh). A third-cycle bird was found at Lower Monumental Dam, Walla Walla and Franklin counties, and later relocated along the Columbia River in Kennewick and Richland, Benton Co., 8 Jan–27 Feb 2016 (2016-1; photos: JAb, MCl, JF, CLI, TM). This was Washington’s first Slaty-backed Gull seen east of the Cascades.
Arctic Loon (*Gavia arctica*) (4, 1). One in basic plumage was inside the marina at Tokeland, Pacific Co., 4–10 May 2014 (ARLO-2014-2; MtB, photo: DYQ, video: MiH; Figure 2). This marks the first report of the Arctic Loon to be accepted in seven years, despite 15 reports coming in for review in this period. Although identification of this species can be difficult to demonstrate without high-quality photos, the committee believes it is considerably rarer in Washington than the relatively frequent yet unsubstantiated reports might suggest.

White-capped Albatross (*Thalassarche cauta*) (2, 0). In the wake of the split of Shy Albatross into three species (Chesser et al. 2014), the committee reconsidered Washington’s two records. Both were affirmed as representing the White-capped Albatross, though the subspecific identification as *T. c. cauta* or *T. c. steadi* remains uncertain. WCAL-1951-1, previously published as SHAL-1951-1 in Aanerud and Mattocks (1997), was of a female collected 63 km west of Quillayute, Clallam Co., 1 Sep 1951 (U.S. National Museum specimen 420017); and WCAL-2000-1, previously SHAL-2000-1 in Aanerud (2002), was photographed 57 km off Westport, Grays Harbor Co. (46.9° N, 124.88° W), 22 Jan 2000. The clustering of North American White-capped Albatross sightings (two off Oregon, one off California, and one of the two off Washington) from 1996 to 2003 suggested to Howell et al. (2014) that they represented one roaming individual.

Short-tailed Albatross (*Phoebastria albatrus*) (18, 3). One immature was on the ocean over Willapa Canyon, Pacific Co., 12–15 Apr 2014 (STAL-2014-1; photo: KL). Another immature, possibly the same bird, was over the same area, 26 Apr 2014 (2014-2; BLB, GSM, photo: MCh). A female that had been banded as a chick on Torishima I., Japan, on 2 Mar 2015 was found injured north of Tatoosh I., Clallam Co., 15 Aug 2015. It was captured and brought to a rehabilitation facility where it subsequently died (2015-2; photo: BSp, CSp, DSp, fide RJM). The specimen was preserved by the U.S. Fish and Wildlife Service for educational purposes, but we received no answer to an inquiry concerning its location. The population of the Short-tailed Albatross has continued to recover (Nagatsuji 2018), and the species has been seen annually off Washington’s coast since 2008.

Murphy’s Petrel (*Pterodroma ultima*) (9, 2). One was 100 km west of Seaside, Oregon, in Washington waters, Pacific Co. (46.064° N, 125.227° W), 8 May 2015 (MUPE-2015-1; BWa). Another was seen ~93 km west of Ocean Park, Pacific Co. (46.441° N, 125.264° W), 4 May 2016 (2016-1; PL). All records but one are from April or May, a pattern mirrored in Oregon and California where reports are much
more numerous (Bailey et al. 1989). Because of this species’ tendency to remain far offshore where coverage is limited at this season, Murphy’s Petrel may be more frequent off Washington than the limited number of records implies (Lehman 2016).

Mottled Petrel (*Pterodroma inexpectata*) (25, 8). The WBRC reviewed one specimen collected on the Long Beach Peninsula, Pacific Co., 2 Jul 1999 (MOPE-1999-1; Univ. of Wash. Burke Mus. 66991, video of specimen: SM). Another was found dead (specimen not preserved) by COASST observers on Second Beach, Clallam Co., 5 Oct 2013 (2013-1; photos: SK, SHo, fide CW). In addition, six were observed from a cruise ship on 2 Dec 2015: one 94 km off Cape Disappointment, Pacific Co. (46.030° N, 125.242° W) (2015-1; LH, DVP, photo: RJM); one 91 km off Cape Disappointment, Pacific Co. (46.138° N, 125.242° W) (2015-2; LH, RJM, DVP); one 91 km off Leadbetter Point, Pacific Co. (46.559° N, 125.258° W) (2015-3; BWa); one 84 km off Point Brown, Grays Harbor Co. (46.811° N, 125.261° W) (2015-4; LH, photos: RJM, DVP); one 83 km off Point Brown, Grays Harbor Co. (46.852° N, 125.262° W) (2015-5; LH, RJM, DVP); and one 84 km off Ocean Shores, Grays Harbor Co. (46.992° N, 125.269° W) (2015-6; LH, DVP). As with Murphy’s Petrel, the status of the Mottled Petrel in Washington waters in winter is probably underrepresented because of the limited coverage far offshore during this period (Lehman 2016).

Hawaiian Petrel (*Pterodroma sandwichensis*) (2, 1). Washington’s second Hawaiian Petrel was spotted from a repositioning cruise 270 km off Oceanside, Pacific Co. (46.449° N, 127.622° W), 25 May 2014 (HAPE-2014-1; PL). Lehman (2016) suggested that this species might move closer to the west coast of North America in August and September, prior to the increase in coverage afforded by birders taking repositioning cruises, so its presence is perhaps greater than the two Washington records imply.

Great Shearwater (*Ardenna gravis*) (9, 4). Three records come from organized pelagic trips from Grays Harbor Co.: two birds were observed together 14 km off Westport (46.9° N, 124.3° W), 6 Oct 2013 (GRSH-2013-3; photos: MCh, EHe); one was found 35 km off Westport (46.9° N, 124.6° W), 27 Jun 2015 (2015-1; photos: GSM, NR); and one was 48 km off Grayland (46.8° N, 124.75° W), 15 Aug 2015 (2015-2; photos: CWa, GSM, JPa, TL, MCh). One additional record of a bird found farther north, 64 km off Cape Alava (48.00° N, 125.58° W), Clallam Co., 7 Sep 2015 (2015-3; photo: KL). The June record is the only one of the Great Shearwater in Washington outside the period from late August to early October.

Manx Shearwater (*Puffinus puffinus*) (42*, 1). Between 1990 and 2008, when the WBRC removed the Manx Shearwater from the review list, it accepted 42 reports, establishing the regularity of this species off Washington’s coast. One of those records was tabled on first consideration but inadvertently not formally reconsidered until 2014: one observed off Westport, Grays Harbor Co., 2 Oct 1993 (MASH-1993-1; BLB, AR).

was spotted off Discovery Park, Seattle, King Co., 16 Oct 2015 (2015-6; SG, EvH), representing the fifth record within Puget Sound. A subadult was about 88 km off Westport, Grays Harbor Co. (46.853° N, 124.851° W), 23 Jul 2016 (2016-1; GSM, photos: GP, RSh). One (possibly two) was at the south end of Swiftsure Bank, Clallam Co. (48.467° N, 124.95° W), on 10 Sep 2016 (2016-2; MiB, BBo, JCh, EG, DVH).

Dispersal of the Brown Booby north of its traditional range has become routine in recent years. Fourteen of Washington’s 18 records are from after 2010, as this species’ presence along the Pacific coast of the United States has become more regular (Whitworth et al. 2007).

Snowy Egret (*Egretta thula*) (40, 6). An old report of one at Bay Center, Pacific Co., 28 Sep–15 Oct 1997 (SNEG-1997-2; photos: RuS, RoS) recently surfaced. One was at the north end of the Potholes Wildlife Area, Grant Co., 4–8 Sep 2013 (2013-2; MiH, photo: RFr). One was at McNary NWR, Walla Walla Co., 28 Apr 2014 (2014-1; MLD). One was at Ridgefield NWR, Clark Co., 13 Oct–3 Dec 2014 (2014-2; photos: RH, DSc). Another was found at the same location the following year, at Ridgefield NWR, Clark Co., 2 Oct–8 Dec 2015 (2015-1; RFl, photos: KBl, RH). One was found in Fife and then Orting, Pierce Co., 30 Jul–3 Aug and 4–8 Nov 2016 (2016-1; Fife: BLB, photos: KBn, JGl, JGu, MiH, TM, RJM, DSc, DYQ, video: DYQ; Orting: photos: MCh, MRe, PWi). The Snowy Egret seems to be undergoing a resurgence in Washington, as the seven records since 2011 follow five years without a single record.

Little Blue Heron (*Egretta caerulea*) (6, 2). An immature was at Fir I., Skagit Co., 14 Sep 2014 (LBHE-2014-1; photos, MiH, JM, DSc; Figure 3). Another immature was found dead across the state in Spokane, Spokane Co., 17 Nov 2014 (2014-2; WK, photo: CLo). The specimen is preserved by the Spokane Audubon Society for educational purposes. Washington’s six records are evenly split between east and west.

![Figure 3. An immature Little Blue Heron (LBHE-2014-1) at Fir Island, Skagit Co., 14 Sep 2014, the first in Washington west of the Cascades in 25 years. (Photo by © Doug Schurman.)](image)
Cattle Egret (*Bubulcus ibis*) (3*, 3). One was found at Neah Bay, Clallam Co., 30 Oct–11 Nov 2014 (CAEG-2014-1; photos: MCh, RHi, LJ, DJ, DSc). One was found at Bay Center, Pacific Co., 8 Nov 2014 (2014-2; MFM, photo: TM). A third was at Satsop, Grays Harbor Co., 9–11 Nov 2014 (2014-3; MtB, photo: CRI).

The Cattle Egret was first found in Washington in 1967. Its numbers increased through the late 1990s, when it seemed to be becoming a regular visitor as its overall range expanded. In the 1990s, western Washington averaged four reports per year and eastern Washington averaged about 13 (Wahl et al. 2005). After 2000 the numbers reported in the state declined drastically, with only four years in the first decade of the 21st century yielding 10 or more sightings. Upon considering that only two sightings were known after 2008, the committee added the Cattle Egret to the review list in 2014. The three individuals noted here appeared within a month of that decision, but the longer-term trend in Washington is still unclear.

Broad-winged Hawk (*Buteo platypterus*) (25*, 1). One was found at East Fish Lake, Chelan Co., 3 Oct 2013 (BWHA-2013-6; JeG, HM, photo: TGa). This is the final report of the Broad-winged Hawk accepted by the committee, which in 2013, just after this sighting, voted to remove the species from review list.

Yellow-bellied Sapsucker (*Sphyrapicus varius*) (14, 3). One adult female was found on the Seattle Christmas Bird Count in the Bellevue Botanical Gardens, King Co., 26 Dec 2015 (YBSA-2015-1; photos: AMc, CRA). An adult female was in Kennewick, Benton Co., 2–3 Jan 2016 (2016-1; LN, photo, video: JCl). Another adult female was in Wallingford, Seattle, King Co., 25 Mar 2016 (2016-2; KSM).

Crested Caracara (*Caracara cheriway*) (4, 1). An adult appeared in Skykomish, King Co., 11 Jun–5 Jul 2015 (CRCA-2015-1; photos: TM, JMi, GP, SRa, CRi, DSc, DSw, BWa, AMW, video: DSw; Figure 4). On the west slope of the Cascade Range, this is the first caracara found in Washington away from the coast.

Eurasian Hobby (*Falco subbuteo*) (2, 1). Washington’s second Eurasian Hobby, an adult, delighted birders during its seven-day stay in the Wa’tch River valley, Neah Bay, Clallam Co., 26 Oct–1 Nov 2014 (EHOB-2014-1; photos: FL, RJM, SM, SRa, CRu, DSc, CWr; this issue’s front cover). Most North American records are from Alaska, where the species has been recorded on Bering Sea and Aleutian islands and once in the Gulf of Alaska (Howell et al. 2014).

Figure 4. This Crested Caracara (CRCA-2015-1), with its distinctive yellow crop visible, was in the Cascade Range at Skykomish, King Co., 11 Jun–5 Jul 2015 (photo 16 Jun 2015). (Photo by © Jeff Mills.)
Scissor-tailed Flycatcher (*Tyrannus forficatus*) (15, 3). In winter, remarkably, was one at Sand Point, Clallam Co., 21 Dec 2015 (STFL-2015-1; photo, video: JWi). An immature was at Marymoor Park, King Co., 23 Jul 2016 (2016-1; photos: KJW, MW). An adult spent two weeks along State Route 24, near Othello, Adams and Franklin counties, 10–25 Aug 2016 (2016-2; photos: RJB, CB, SG, JGl, CJ, TL, TM, JMi, JPu, CRi, RSm, JVa, BWa).

Alder Flycatcher (*Empidonax alnorum*) (4, 1). Washington’s fourth was singing along Scotia Road, Pend Oreille Co., 7–20 Jun 2014 (ALFL-2014-1; photos: JI, TM, MMO, video: JI, MMO, DSc, audio: MtB, MMO). All of the state’s Alder Flycatchers have been found in June. Although this species breeds across British Columbia to the north, regional records south of this are limited: Oregon has one (Hertzell 2019), California has six (Hamilton et al. 2007, Tietz and McCaskie 2019), and Idaho has one (IBRC 2019).

Vermilion Flycatcher (*Pyrocephalus rubinus*) (7, 1). A first-year female was at Ridgefield NWR, Clark Co., 26 Nov–6 Dec 2013 (VEFL-2013-1; photos: RFr, BPe, JWl). Surprisingly, this bird chose almost exactly the same perches favored by a Vermilion Flycatcher at the same site in 2011 (2011-1, Mlodinow and Bartels 2016). Were it not for the bird’s age, it might well have been considered a returning individual.

Woodhouse’s Scrub-Jay (*Aphelocoma woodhouseii*) (1, 1). Just prior to the 2016 split of the former Western Scrub-Jay (*A. californica sensu lato*) into the California Scrub-Jay (*A. californica sensu stricto*) and Woodhouse’s Scrub-Jay (*A. woodhouseii*) (Chesser et al. 2016), the committee reviewed a 2002 record of the Western Scrub-Jay from Clarkston, Asotin Co., and affirmed it as the Washington’s only known occurrence of the Woodhouse’s. Now elevated to species status, Woodhouse’s Scrub-Jay inhabits juniper and pinyon pine woodlands from central Mexico north through the Rocky Mountain region to northern Nevada and southern Idaho (Curry et al. 2017). The Clarkston scrub-jay remained from February to April 2002 and established an extralimital occurrence of this mostly sedentary species (WOSJ-2002-1; photos: RuS, PSu).

Blue-gray Gnatcatcher (*Polioptila caerulea*) (18, 6). One in Neah Bay, Clallam Co., 7–10 Nov 2014 (BGGN-2014-1; AR, photos: MCh, BWa) was identified as Washington’s first example of the eastern subspecies, *P. c. caerulea*. The identification was based on a combination of vocalizations and patterning of the outer tail feathers. Previously, one record had been assigned to the western subspecies *P. c. obscura*, and the remaining earlier records were not allocated to subspecies (Mlodinow and Bartels 2016). Also of the eastern subspecies *P. c. caerulea* were two at different locations around Neah Bay, Clallam Co., 12 Oct–11 Nov 2015 (2015-2; BWa, photos: BBn, JGu, RJM, SRa, DSc, video: JGu, audio: RJM) and 25 Sep 2016 (2015-1; photos: BBn, RJM, SRa, DSc). Three more were not identified to subspecies: one at Cape Flattery, Clallam Co., 25 Oct 2015 (2015-3; photo: BrP), one at Clallam Bay, Clallam Co., 3 Nov 2015 (2015-4; photos: BBn, BWa); and one at Kent, King Co., 22 Nov 2015 (2015-5; photo, video: SRa, the only one in this report away from Clallam Co. in the Washington’s northwest corner). Of the 18 total records, 15 have come from west of the Cascades, three from the east.

Northern Wheatear (*Oenanthe oenanthe*) (3, 1). One visited Pt. Robinson on Vashon I., King Co., 18–21 Oct 2014 (NOWH-2014-1; photos: EvH, TM, GOl, OO, GP, CRu, DSc, ESw, MTr, GTh). Oregon has six records (Hertzel 2019), California 13 (Hamilton et al. 2007, Tietz and McCaskie 2019). Paralleling Washington’s Northern Wheatears, 17 of the 19 recorded in Oregon and California were found from the end of August through early November.

Brown Thrasher (*Toxostoma rufum*) (19, 6). One was found on Tatoosh I., Clallam Co., 8–9 Sep 1999 (BRTH-1999-2; RP, photo: TWo). Another was at Long Beach, Pacific Co., 9 Jul 2014 (2014-1; photo: SW). One was at Deming, Whatcom Co., 20 May 2015 (2015-2; photos: FL, CaM, PWe). One was found in Leavenworth, Chelan Co., 21 Nov 2015 (2015-1; photo: CoM, fide HM). One was observed in Pasco, Franklin Co., 10 Apr 2016 (2016-1; LSM). Finally, one was at Lyman, Skagit Co., 13 Jun 2016 (2016-2; photo: GBl). Though the records have spanned the year, more than two-thirds (13 of 19) of Washington’s Brown Thrashers arrived from April to July.
Gray Wagtail (*Motacilla cinerea*) (1, 1). Washington’s first was photographed in flight about 43 km off Westport, Grays Harbor Co. (46.834° N, 124.867° W), 24 Sep 2016 (GRAW-2016-1; BLB, photos: JRo, RSh, BWa; Figure 6). The Gray Wagtail is a widespread Old World species that is represented in North America by just four records away from far western Alaska, all from September to November. These include one in California, two in British Columbia, and one in the Northwest Territories. Remarkably, the one in the Northwest Territories was also seen at sea (Howell et al. 2014).

White Wagtail (*Motacilla alba*) (10, 1). One was observed at the Gog-le-hi-te Wetlands, Tacoma, Pierce Co., 7 Nov 2015 (WHWA-2015-1; MtB, sketch: MiH). Six of the Washington’s 10 White Wagtails were found between late April and mid-May, three were found in November, and one was present from January to May in 1984 (Tweit. and Skriletz 1996).

Siberian American Pipit (*Anthus rubescens japonicus*) (1, 1). The first example of this subspecies known in Washington was at Hobuck Beach, Clallam Co., 8–9 Nov 2014 (AMPI-2014-1; FL, CWr). It was studied at length by observers familiar with the features distinguishing *A. r. japonicus* from the American subspecies of *Anthus rubescens*. These included a cold gray coloration without buffy tones, thick black streaking on white underparts, a strongly contrasting face pattern, bold white wing bars, and pale pink legs (Lee and Birch 2002). The bird was photographed, but while the photos are suggestive and consistent with the subspecific identification, they are not fully diagnostic, so this record remains a sight record.

Eastern Purple Finch (*Haemorhous purpureus purpureus*) (3*, 2). One was seen and recorded near Bradley Lake, Pierce Co., 20 Nov 2012 (PUFI-2012-1; audio: CWr). Another patronized a feeder on Bainbridge I., Kitsap Co., 15 Dec 2014 (2014-1; photo: BWa; Figure 7).

Hoary Redpoll (*Acanthis hornemanni*) (21, 2). An adult female was near Havilah, Okanogan Co., 18 Feb 2013 (HORE-2013-3; photo: ScC). Although seven reports of this species during the winter of 2012–13 were reviewed, the committee accepted only one this one, a sign of the difficulty of identifying and adequately documenting this species. An adult male was along Corkindale Creek, Skagit Co., 2–18 Jan 2016 (2016-1; photo: RJM).
Little Bunting (*Emberiza pusilla*) (1, 1). One visiting feeders at Ocean Shores, Grays Harbor Co., 9–13 Oct 2015 provided Washington’s first record (LIBU-2015-1; MtB, photos: TM, RJM, DR, BWa, CWe; Figure 8). Previous records south of Alaska, where the Little Bunting is almost annual in the fall on the Aleutians and the islands of the Bering Sea (Gibson and Withrow 2015), include one in Oregon (2013), one in Arizona (2017), four in California (1991, 2002, 2012, 2013), and one in Baja California Sur, Mexico (2008). Howell et al. (2014) noted that the pattern of fall records implies misoriented birds migrating southeast from their breeding grounds across northern Eurasia.

Rustic Bunting (*Emberiza rustica*) (4, 1). One was in Acme, Whatcom Co., 27 Feb 2016 (RUBU-2016-1; photos: FL, NS). All Washington records of this rare Eurasian stray fall between November and April, a pattern that holds in Oregon (Hertzel 2019) and California (Hamilton et al. 2007, Tietz and McCaskie 2019).

LeConte’s Sparrow (*Ammodramus leconteii*) (5, 1). Washington’s first LeConte’s Sparrow since 1996 sang and displayed near Marblemount, Skagit Co., 13–21 Jun 2014 (LCSP-2014-1; photo, video: RJM; Figure 9 on page XX). Four of the five state records are for late May and June, a pattern not shared by neighboring states. Oregon has four records, two from late May and one each from September and October (Hertzel 2019). Idaho’s two records (one accepted and one in review) are both from November (IBRC 2019). California, with 40 records, has only three from spring/summer (Hamilton et al. 2007, Tietz and McCaskie 2019).

Thick-billed Fox Sparrow (*Passerella iliaca megarhyncha* group) (2*, 1). One was seen and heard along Snowden Road above White Salmon, Klickitat Co., 21–25 Jun 2015 (TBFS-2015-1; CaF, SJ). Hearing, and when possible recording, contact calls of breeding Fox Sparrows in the southern Washington Cascades has proven most critical to solidly documenting this subspecies group in the state.

Hooded Oriole (Icterus cucullatus) (10, 1). A male in fresh plumage in Hoquiam, Grays Harbor Co., 8–10 Nov 2014 (HOOR-2014-1; photos: TM, AMa, LO, JOg) furnished Washington’s latest record of the Hooded Oriole. Nine of the state’s ten records are from west of the Cascades, and six of the sightings come from late April to mid-June.

Ovenbird (Seiurus aurocapilla) (28, 5). One was heard and briefly seen at English Camp on San Juan I., San Juan Co., 1 Jun 2014 (OVEN-2014-2; MtB, TiB, JCK, SCA, MiH). Another, also singing, was found on Larch Mountain, Clark Co., 4 Jul 2014 (2014-3; audio: MtB). One was at Anacortes, Skagit Co., 11 Sep 2014 (2014-4; RSc). Another was singing at the marsh adjacent to the Tieton airstrip, 3
km south of Rimrock, Yakima Co., 18 Jun 2015 (2015-1; JSp, fide DGr). One was recorded singing near Disautel, Okanogan Co., 5 Jun 2016 (2016-1; audio: CWl). Sightings have come evenly from both sides of Washington, with 11 in the past decade.

Tennessee Warbler (*Oreothlypis peregrina*) (39, 8). One was photographed at Washtucna, Adams Co., 19 Jul 2013 (TEWA-2013-3; photo: LAP). One was at the Sprague Lake Resort, Lincoln Co., 8 Sep 2013 (2013-2; photo: Ji). One found at Potholes State Park, Grant Co., on 18 Nov 2013 persisted until 23 Nov, when it was salvaged after falling from a tree (2013-4; photos: TM, BP, DPe, DSc, MY, CWl, Univ. of Wash. Burke Mus. 119334). One was at Colbert, Spokane Co., 14 Sep 2015 (2015-1; photo: JeD). Two records came from Neah Bay, Clallam Co., on the same date, 21 Sep 2015 (2015-2; CWl, and 2015-3; photo: CWl). Another Tennessee Warbler was on Bahokus Peak, Clallam Co., 28 Sep 2015 (2015-4; Ji). One was found near Sekiu, Clallam Co., 3–21 Nov 2015 (2015-5; photos: BBn, BWa).

Lucy’s Warbler (*Oreothlypis luciae*) (2, 2). Washington’s first was found at Neah Bay, Clallam Co., 6–7 Nov 2014 (LUWA-2014-1; BWa). A second record, also at Neah Bay, came only a year later, 16 Sep 2015 (2015-1; photo: RJ; Figure 10 on page 171).

Northern Parula (*Setophaga americana*) (18, 2). A male was singing at Fort Walla Walla, Walla Walla Co., 13–17 Jun 2014 (NOPA-2014-1; MDe, MLD, photos: TM, GO, OO, HR). Another male was recorded singing at Kamiak Butte, Whitman Co., 7–8 Jun 2016 (2016-1; RK, audio: RJB, MCI). Eight records are from the east side of the state, while ten are from the west.

Magnolia Warbler (*Setophaga magnolia*) (26, 2). One was at Raymond, Pacific Co., 23 Oct 2015 (MAWA-2015-1; photos: SM, BWa). Another, a male, was singing on Tatoosh I., Clallam Co., 5 Jun 2016 (2016-1; TWo).

Blackburnian Warbler (*Setophaga fusca*) (7, 1). One at Neah Bay, Clallam Co., 18 Sep 2016 (BLBW-2016-2; BT, photo: RJ) was Washington’s first Blackburnian Warbler documented with photographs. The state’s records are split, with three records each for both spring (May/June) and fall (late-August–September), plus one additional December record.
Chestnut-sided Warbler (*Setophaga pensylvanica*) (32, 5). One was at Konnowac Pass, Yakima Co., 15–17 Sep 2014 (CSWA-2014-1; KBy, DB, photos: TM, ESt, ASd, KZ). A male was at Horn Rapids, Benton Co., 9 Jun 2015 (2015-1; photo: KAb). Another was at Fishhook Park, Walla Walla Co., 31 Aug 2015 (2015-2; MDe, MLD). One was at Discovery Park, Seattle, King Co., 6 Sep 2015 (2015-3; EvH, photos: JGu, RJM). A male was at Lyons Ferry, Franklin Co., 4 Jun 2016 (2016-2; RFl, photo: JRo). The timing of these most recent sightings continues to represent a shift from earlier records: prior to 2000, 12 of Washington’s first 13 records were for June or July; since then only eight of the 19 records have been for those months.

Blackpoll Warbler (*Setophaga striata*) (35, 3). One was at the north end of the Potholes Wildlife Area, Grant Co., 5 Sep 2015 (BLPW-2015-2; photo: MY). Another was across the state on Bainbridge I., Kitsap Co., 6 Sep 2015 (2015-3; photo: BWa). One male was at Bassett Park, Washtucna, Adams Co., 18 May 2016 (2016-1; RFl). The Blackpoll Warbler’s seasonality in Washington remains well established, with two of these three new records fitting nicely in the period 1–15 September that accounts for 71% of the state’s records. In contrast only four records are from May, two are from June, and an additional four records fall outside the early September window.

Yellow-throated Warbler (*Setophaga dominica*) (3, 1). One was at Longview, Cowlitz Co., 13–26 Dec 2015 (YTWA-2015-2; JGn, MG, RK, photos: RHi, TM, GO, OO, CRi, DSc; Figure 11).

Prairie Warbler (*Setophaga discolor*) (2, 1). An adult male photographed at Rialto Beach, Clallam Co., 17 Oct 2015 (PRAW-2015-1; photo: RBr) was Washington’s first Prairie Warbler documented with photographs and the first for western Washington. Although Washington has still only two records, 13 of the 16 Oregon records are from September or October (Hertzel 2019), and the vast majority of California records are from the coast in fall (Hamilton et al. 2007), so neither the timing nor the location of the Washington Prairie Warbler is particularly surprising.

Summer Tanager (*Piranga rubra*) (9, 5). A report of a female or immature male from Ridgefield NWR, Clark Co., 26 May 2001 was tabled on initial review in 2001 and only recently reconsidered and affirmed (SUTA-2001-1; PWS). An adult male was in West Seattle, King Co., 29 Nov 2013 (2013-1; SHu). Another adult male was in Olympia, Thurston Co., 3 Jun 2014 (2014-1; BR). A female or immature was at Woodland Bottoms, Cowlitz Co., 1 Nov 2015 (2015-1; photos: BBd, LMj). Another female or immature was at Neah Bay, Clallam Co., 4 Nov 2015 (2015-2; photo: BWa). All Washington’s records of the Summer Tanager have come from the west side of the state. As with the most recent sightings, they are clustered in two periods: late May to June (three records), and November to January (six records). Nine of Idaho’s 10 records are for summer (IBRC 2019), as are 11 of the 14 records from eastern Oregon. The nine western Oregon records are more scattered seasonally (Hertzel 2019).

Indigo Bunting (*Passerina cyanea*) (38, 5). An adult male was at Steigerwald NWR, Clark Co., 30 May–4 Jun 2014 (INBU-2014-1; BCo, GL, photos: BBn, EBj, MCh, EK, DLw, GNe). Another adult male was at West Sequim, Clallam Co., 13 Jun 2015 (2015-1; photo: GNi, fide DVH). A molting male was briefly seen near Sprague, Lincoln Co., 28 Aug 2015 (2015-2; TL). Another molting male lingered for over
a month in Mukilteo, Snohomish Co., 7 Mar–12 Apr 2016 (2016-1; photos: BaB, TM, RJM, DSc). Yet another male was found singing along Peters Road, Randall, Lewis Co., 25 Jun–4 Jul 2016 (2016-3; BT, photos: WJ, TM, GO, OO, CRi, RSm, DYQ, audio: MtB). Over two thirds of Washington’s Indigo Buntings have occurred from May to July, while a fifth seem to be fall migrants from August to early October. Twenty-eight records are from west of the Cascades and 10 are from the east side.

Painted Bunting (*Passerina ciris*) (3, 1). One was at Neah Bay, Clallam Co., 27 Sep 2013 (PABU-2013-1; BWa, photos: Ji, DWa). This is Washington’s first record for the fall, and the first of a Painted Bunting in hatch-year plumage.

Dickcissel (*Spiza americana*) (12, 3). An old record surfaced of a male in Edison, Skagit Co., 24 May 1995 (DICK-1995-1; JWg, KWg, photo: GJ). A singing adult male was in Hardy Canyon, Yakima Co., 3–8 Jun 2015 (2015-1; BrB, MiH, photos: JGu, CLi, TM, GP, DSc, audio: MtB). A male was at Wa’atch, Neah Bay, Clallam Co., 26–28 May 2016 (2016-1; photos: AdA, JGa, JSc). Six of Washington’s Dickcissels have occurred in May and June, the other six from September to December, one of which remained into April.

Reports Not Accepted by the Committee—Identification Uncertain

Taiga Bean-Goose (*Anser fabalis*) (1, 0). The description of one reported from along the Duwamish River, Seattle, King Co., 1 Oct 2013 (TABG-2013-1, vote: 0-7-0) lacked detail and failed to distinguish the birds from a Greater White-fronted Goose (*A. albifrons*), a far more likely alternative.

King Eider (*Somateria spectabilis*) (18, 3). The WBRC reviewed an old report of one seen from Discovery Park, Seattle, King Co., 18 Dec 2005 (KIEI-2005-1, vote: 0-5-2). The details observed, from a great distance, were insufficient for this report to be endorsed. The report of a female from Ocean Shores, Grays Harbor Co., 14 Feb 2016 (2016-2, vote: 1-6-0) did not conclusively rule out the Common Eider (*S. mollissima*).

Common Eider (*Somateria mollissima*) (3, 0). A report of one at Salt Creek, Clallam Co., 18 Mar 2016 (COEI-2016-1, vote: 0-7-0) included details insufficient to confirm the identification.

White-winged Dove (*Zenaida asiatica*) (13, 3). A report of two from Sandy Point, Whatcom Co., 5 Sep 2014 (WWDO-2014-1, vote: 0-7-0), was short on descriptive detail and failed to eliminate the Eurasian Collared-Dove. Likewise, a report of a pair in Spanaway, Pierce Co., in the summer of 2015 (2015-2, vote: 0-7-0) was far more likely to be based on the Eurasian Collared-Dove.

White-rumped Sandpiper (*Calidris fuscicollis*) (8, 1). A shorebird photographed 6 km north of Wallula, Walla Walla Co., 21 Sep 2013 (WRSA-2013-2, vote: 0-7-0), appeared to show white in the rump area, though it appeared too extensive for a White-rumped Sandpiper and was likely the effect of the way the feathers were positioned.

Spotted Redshank (*Tringa erythropus*) (1, 1). One supposed to be at Nisqually NWR, Thurston Co., 16 Jul 2015 (SPRE-2015-1, vote: 0-7-0), was reported to have red legs, but no other features were noted, and the description and distant photos did not convincingly eliminate the Greater Yellowlegs (*T. melanoleuca*).

Thick-billed Murre (*Uria lomvia*) (26, 4). The report of one off Port Angeles, Clallam Co., 8 May 2015 (TBMU-2015-2, vote: 1-6-0) relied on back color alone for the identification and was insufficiently documented for acceptance.

Long-billed Murrelet (*Brachyramphus perdix*) (11, 2). The description of one seen at a distance off Ediz Hook, Port Angeles, Clallam Co., 29 Dec 2013 (LBMU-
2013-2, vote: 0-7-0) did not include field marks such as the bill structure, face pattern, or other details necessary to rule out a Marbled Murrelet (B. marmoratus).

Scripp’s/Guadalupe/Craveri’s Murrelet (Synthliboramphus scrippsi/ hypoleucus /craveri) (4, 0). Two murrelets seen offshore over Grays Canyon, Grays Harbor Co., 7 Sep 2014 (SCMU/GUMU/CRMU-2014-4, vote: 0-7-0) were not described adequately to establish their identity. This report came earlier in the same trip as a pair reported above as accepted record SCMU-2014-5.

Black-headed Gull (Chroicocephalus ridibundus) (21, 3). The photograph of a supposed Black-headed Gull in Everett, Snohomish Co., 19 Oct 2014 (BHGU-2014-1, vote: 0-7-0) was oddly exposed and apparently showed a Bonaparte’s Gull (C. philadelphia). A Black-headed Gull at McNary Dam along the Columbia River left no doubt as to its identity while it was on the Oregon side of the river 2–11 Jan 2015 (Hertzel 2019), but it was not convincingly documented to have ventured to the Washington side of the state line in Benton County on 3 Jan 2015 as reported (2015-1; vote: 1-6-0).

Little Gull (Hydrocoloeus minutus) (2*, 2). A bird photographed and videotaped from West Seattle, King Co., 19 Sep 2015 (LIGU-2015-1, vote: 0-7-0) was reported as the Little Gull but appeared more likely to be a Mew Gull (Larus canus). Another report from Birch Bay, Whatcom Co., 12 Sep 2016 (2016-1, vote: 0-6-1) did not adequately rule out Bonaparte’s Gull.

Iceland Gull sensu stricto (Larus glauoides glaucoides/kumlieni) (29, 10). A report of an adult from the Gog-le-hi-te Wetlands, Tacoma, Pierce Co., 21 Dec 2013 (ICGU-2013-6, vote: 2-5-0), mentioned white wing tips not consistent with a Kumlien’s Gull, and did not rule out other gulls with leucistic plumage. The photos submitted of another supposed adult at Nisqually NWR, Thurston Co., 5 Feb 2014 (2014-3, vote: 1-5-1) appeared to show a Glaucous-winged Gull (L. glaucescens). The description of a supposed first-cycle Iceland Gull at Howard Amon Park, Richland, Benton Co., 17 Feb 2014 (2014-4, vote: 0-7-0) did not rule out a Glaucous-winged Gull. The report of one from Cape Alava, Clallam Co., 27 Mar 2015 (2015-1, vote: 0-7-0) was not accepted because of concerns that other species in faded plumage were not eliminated.

Least Tern (Sternula antillarum) (6, 0). The committee reviewed a 1976 report, potentially the earliest for this species in Washington. The bird was well documented while in Oregon on the south side of the mouth of the Columbia River (Hertzel 2019), and then was noted flying north toward Cape Disappointment, Pacific Co., 31 May 1976 (LETE-1976-1, vote on Washington occurrence: 2-5-0). The committee believed such a small bird could not be reliably tracked across the more than 5-km width of the river mouth to be certain it had indeed continued into Washington rather than stopping en route.

Arctic Loon (Gavia arctica) (4, 1). Seven reports of this species were not accepted, emphasizing its difficulty of identification. One reported from Discovery Bay, Jefferson Co., 24 Jan 2014 (ARLO-2014-1, vote: 1-5-1) was seen at a distance too great for the committee to be confident in the identification. The report of one from Reach I., Mason Co., 27 Dec 2014 (2014-3, vote: 0-7-0) noted only white flanks and no other field marks. The photos of one reported from Larrabee State Park,
Whatcom Co., 9–23 Jan 2015 (2015-1, vote: 0-7-0) appeared to show a Common Loon (G. immer). The description of one from Luhr Beach, Thurston Co., 15–16 Jan 2015 (2015-2, vote: 0-7-0), did not convincingly eliminate the Red-throated Loon (G. stellata) or Pacific Loon (G. pacifica). One reported from Tramp Harbor, Vashon I., King Co., 17 Jan 2015 (2015-3, vote: 0-7-0) was seen at too great a distance for confident identification. Another report, also of one from Vashon I., King Co., on 23 Mar 2015 (2015-4, vote: 0-7-0), provided too few identifying features to allow identification. Finally, the report of one from West Beach, Whidbey I., Island Co., 20–25 Nov 2015 (2015-5, vote: 0-7-0) lacked detail sufficient for the committee to endorse it.

Short-tailed Albatross *(Phoebastria albatrus)* (18, 3). A report from a cruise ship just off Cape Flattery, Clallam Co. (48.356° N, 124.774° W), 8 May 2015 was of a dark albatross seen at distance and without views of the head or bill. (STAL-2015-1, vote: 0-7-0).

Murphy’s Petrel *(Pterodroma ultima)* (9, 2). A supposed Murphy’s Petrel seen briefly off Westport, Grays Harbor Co., 14 May 2016 (MUPE-2016-2, vote: 0-7-0) was not documented sufficiently to allow endorsement.

Juan Fernandez Petrel *(Pterodroma externa)* (0, 0). The WBRC considered the report of one off Westport, Grays Harbor Co., 14 Sep 1990 twice previously. Ultimately it concluded that the details provided were insufficient to rule out other *Pterodroma* species such as the Hawaiian Petrel (JFPE-1990-1, vote: 0-6-1).

Least Bittern *(Ixobrychus exilis)* (0, 0). A report of one heard near the power plant 8 km northeast of Centralia, Lewis Co., 5 Sep 2014 (LEBI-2014-1, vote: 0-6-1), was not sufficiently documented to justify acceptance of a potential first state record, albeit one that is overdue.

Snowy Egret *(Egretta thula)* (40, 6). Two reports from Puget I., Wahkiakum Co., spaced almost exactly a year apart were of birds seen too briefly for the Cattle Egret or juvenile Little Blue Heron to be ruled out: one from 27 to 29 Dec 2013 (SNEG-2013-3, vote: 1-6-0) and another on 29 Dec 2014 (2014-3, vote: 0-7-0).

Little Blue Heron *(Egretta caerulea)* (6, 2). A report from Birch Bay, Whatcom Co., 5 Aug 2013 (LBHE-2013-1, vote: 0-7-0) was based on remembered detail and not convincing. Another report from Ann Lake in the Cascade Range, Chelan Co., 16 Aug 2016 (2016-1, vote: 1-5-1) lacked specific detail.

White Ibis *(Eudocimus albus)* (1, 0). A report from Long Beach, Pacific Co., 1 May 2014 (WHIB-2014-1, vote: 0-7-0), failed to convincingly rule out a worn Whimbrel (*Numenius phaeopus*).

Red-shouldered Hawk *(Buteo lineatus)* (43*, 0). A tabled report of one from Cathlamet, Wahkiakum Co., 1 Dec 2002 (RSHA-2002-5, vote: 3-4-0), was insufficient to rule out other species, although Red-shouldered Hawks were being observed in the area regularly around that time.

Broad-winged Hawk *(Buteo platypterus)* (25*, 1). Four reports of the Broad-winged Hawk were not accepted in the period covered by this summary, highlighting the care that needs to be taken with this identification, despite the species’ recent removal from the review list. A description of a hawk seen briefly at Naches Pass, King and Kittitas counties, 11 Sep 2013 (BWHA-2013-2, vote: 3-4-0) failed to eliminate an *Accipiter*. The committee concluded that a hawk north of Everett, Snohomish Co., 3 Oct 2013 (2013-3, vote: 2-5-0), seen while the observer was driving on a highway, was not seen well enough for its identity to be established. The report of a supposed Broad-winged at East Fish Lake, Chelan Co., 4 Oct 2013 (2013-4, vote: 1-6-0), came on the heels of an accepted Broad-winged Hawk (2013-6) but included details such as a dark head that indicated a different bird and did not rule out other

Green Kingfisher (*Chloroceryle americana*) (0, 0). This potential first for Washington was reported from Aberdeen, Grays Harbor Co., 21–29 Oct 2013 (GRKI-2013-1, vote: 0-7-0). The description was not detailed, photos were not obtained despite the bird’s being reported over a week, and the committee concluded the observer did not eliminate a Belted Kingfisher (*Megaceryle alcyon*), perhaps seen under strange lighting conditions.

Alder Flycatcher (*Empidonax alnorum*) (4, 1). One along Icicle Creek, Leavenworth, Chelan Co., 19 Jun 2015 (ALFL-2015-1, vote: 2-4-1) was described as giving calls that did not exclude a Willow Flycatcher (*E. traillii*).

Eastern Phoebe (*Sayornis phoebe*) (12, 0). A supposed Eastern Phoebe at Washtucna, Adams Co., 31 Aug 2016 (EAPH-2016-1, vote: 1-6-0) was seen briefly, a phoebe’s typical tail dipping was not observed, and the report did not eliminate other flycatcher species.

Sedge Wren (*Cistothorus platensis*) (0, 0). The report of one at Ocean Shores, Grays Harbor Co., 19 Nov 2014 (SEWR-2014-1, vote: 0-7-0), was tantalizing, but the bird was seen briefly only twice as it flushed and heard briefly only once, insufficient for a first state record.

Carolina Wren (*Thryothorus ludovicianus*) (0, 0). An audio recording of one reported in Seattle, King Co., 15 Mar 2014 (CARW-2014-1, vote: 0-7-0) confirmed the bird was a Bewick's Wren (*Thryomanes bewickii*).

Northern Wheatear (*Oenanthe oenanthe*) (3, 1). One was reported coming to a bird feeder in Graham, Pierce Co., 23 Jan 2016 (NOWH-2016-1, vote: 0-7-0), a behavior not known in this species.

Siberian Accentor (*Prunella montanella*) (2, 0). A report from Kent, King Co., 5 Jan 2014 (SIAC-2014-1, vote: 0-7-0) did not eliminate the possibility of a Townsend’s Warbler (*Setophaga townsendi*) foraging on the ground.

Black-throated Accentor (*Prunella atrogularis*) (0, 0). The description of a bird seen at a distance in Issaquah, King Co., 5 Jun 2015 (BTAC-2015-1, vote: 0-7-0) was equally consistent with several local species.

Brambling (*Fringilla montifringilla*) (20, 4). The details in a long-tabled report from Fircrest, Pierce Co., 20–21 Nov 1991 (BRAM-1991-2, vote: 2-6-0) were insufficient to confirm this species.

Hoary Redpoll (*Acanthis hornemanni*) (21, 2). An old report from Elk, Spokane Co., 10–17 Mar 2000 (HORE-2000-2, vote: 5-2-0) was supported by videotape but was insufficient to allow endorsement.

Smith’s Longspur (*Calcarius pictus*) (2, 0). An old report from Oyhut Wildlife Area, Ocean Shores, Grays Harbor Co., 6 Oct 1977 (SMLO-1977-1, vote: 1-6-0), failed to include details such as the white outer tail feathers, despite conditions that should have allowed them to be observed. The description of the call notes was inconclusive, and the pale, unmarked underparts were inconsistent with a Smith’s Longspur.

Thick-billed Fox Sparrow (*Passerella iliaca megarhyncha* group) (2*, 1). Two reports of this subspecies group were not accepted during this period as the committee worked to identify satisfactory field marks to convincingly distinguish this group from other subspecies of the Fox Sparrow. One at White Pass, Yakima Co., 8 Jun–5 Jul 2014 (TBFS-2014-1, vote: 0-7-0), was present in the same area where Washington’s first accepted Thick-billed Fox Sparrow was found in 2013, but the
details submitted did not establish the identity. Although the bird was singing and its song was recorded, no call notes were noted or recorded, critical to field identification. Another reported from Mt. St. Helens, Skamania Co., 15 Jul 2014 (2014-2, vote: 0-7-0), was observed too briefly for a Slate-colored Fox Sparrow of the expected subspecies *P. i. olivacea* (*P. i. schistacea* group) to be eliminated. The actual range of the Thick-billed Fox Sparrow in Washington has yet to be clearly delineated, and both of these sightings fall within the range where the Thick-billed may be coming into contact with (and perhaps intergrading with) *P. i. olivacea*.

Red Fox Sparrow (*Passerella iliaca iliaca* group) (23*, 5). One in Bingen, Klickitat Co., 14–16 Feb 2015 (RFSP-2015-1, vote: 2-5-0), was not seen well enough for all the field marks needed to rule out *P. i. altivagans* or intergrades resembling it.

Orchard Oriole (*Icterus spurius*) (10, 3). One report from Neah Bay, Clallam Co., 22 Oct 2015 (OROR-2015-3, vote: 2-5-0) did not adequately distinguish the bird from a Hooded Oriole.

Scott’s Oriole (*Icterus parisorum*) (2, 0). A report from Joint Base Lewis-McChord in Pierce Co., 16 Jun 2014 (SCOR-2014-1, vote: 0-7-0) did not eliminate alternatives such as the Western Tanager (*Piranga ludoviciana*).

Common Grackle (*Quiscalus quiscula*) (22, 3). A report from Birchfield Road, Moxee, Yakima Co., 31 May 2014 (COGR-2014-1, vote: 1-5-1) did not include details that might have eliminated a Great-tailed Grackle (*Q. mexicanus*) or other possibilities. Another, from Toppenish NWR, Yakima Co., 14 Jun 2015 (2015-1, vote: 0-6-1) likewise was insufficient to rule out the Great-tailed Grackle. A report from Fisher Slough, Skagit Co., 18 Mar 2016 (2016-1, vote: 0-7-0) did not convincingly eliminate Brewer’s Blackbird (*Euphagus cyanocephalus*).

Ovenbird (*Seiurus aurocapilla*) (28, 5). One report from Mabton, Yakima Co., 23 May 2014 (OVEN-2014-1, vote: 2-4-1) failed to note the crown pattern and was incorrect with respect to the overall coloration.

Blue-winged Warbler (*Vermivora cyanoptera*) (4, 0). A report of “several” in Clarkston Heights, Asotin Co., 31 May 2012 (BWWA-2012-2, vote: 0-7-0) was implausible with respect to the number of birds and provided minimal description of field marks. A report from Ahtanum, Yakima Co., 17 May 2014 (2014-1, vote: 2-5-0) was not complete enough to rule out other passerines, such as orioles.

Black-and-white Warbler (*Mniotilta varia*) (45, 10). Seven reports of this species were of birds insufficiently described and/or seen only fleetingly: Discovery Park, Seattle, King Co., 26 Sep 2013 (BAWW-2013-2, vote: 2-5-0); Vashon I., King Co., 25 Jun 2015 (2015-2, vote: 1-6-0); north end of the Potholes Wildlife Area, Grant Co., 2 Aug 2015 (2015-3, vote: 0-7-0); Cle Elum, Kittitas Co., 25 Aug 2015 (2015-4, vote: 5-2-0); Magnuson Park, Seattle, King Co., 7 Sep 2015 (2015-5, vote: 0-7-0); Bradley Lake, Pierce Co., 14 May 2016 (2016-1, vote: 1-6-0); near Diablo Lake, Whatcom Co., 2 May 2016 (2016-3, vote: 0-6-1). The committee suspects that many of these reports represent migrating Black-throated Gray Warblers (*Setophaga nigrescens*) appearing in unexpected locations.

Tennessee Warbler (*Oreothlypis peregrina*) (39, 8). A report of a breeding-plumaged male that struck a window but recovered in Seattle, King Co., in May 1988 (TEWA-1988-1, vote: 5-2-0) was based on details reconstructed after too long a span of time had elapsed.

Connecticut Warbler (*Oporornis agilis*) (0, 0). A report of this species in Sammamish, King Co., 13 Sep 2009 (CONW-2009-1, vote: 1-5-1) included photos that did not conclusively support the identification.
Blackburnian Warbler \((Setophaga fusca)\) (7, 1). The details in the report of a male at Horn Rapids Park, Benton Co., 21 May 2016 (BLBW-2016-1, vote: 1-5-1) were insufficient to rule out all alternatives.

Chestnut-sided Warbler \((Setophaga pensylvanica)\) (32, 5). One reported from Vancouver, Clark Co., 26 Apr 2016 (CSWA-2016-1, vote: 2-3-2) was not seen well enough to convince the committee. In addition, the date was more than a month earlier than any other spring sighting of the Chestnut-sided Warbler in Washington or Oregon.

Blackpoll Warbler \((Setophaga striata)\) (35, 3). The report of one in Ferndale, Whatcom Co., 2 Sep 2014 (BLPW-2014-2, vote: 0-6-1) described the birds as in the unlikely alternate plumage and failed to include field marks sufficient to eliminate other species. One at Washtucna, Adams Co., 21 Sep 2014 (2014-1, vote: 4-3-0), was insufficiently described. The report of one near Calispell Lake, Pend Oreille Co., 24 May 2015 (2015-1, vote: 0-7-0) was based on an inconclusive recording of an unseen singing warbler.

Black-throated Blue Warbler \((Setophaga caerulescens)\) (15, 4). One reported from Neah Bay, Clallam Co., 18 Oct 2015 (BTBW-2015-1, vote: 1-5-1) was seen too briefly and incompletely to establish its identity.

Yellow-throated Warbler \((Setophaga dominica)\) (3, 1). One reported from Headgate County Park, 13 km west of Asotin, Asotin Co., 20 Jun 2015 (YTWA-2015-1, vote: 0-7-0) was seen only briefly and partially. The description was not adequate to rule out other more likely warblers such as the Yellow-rumped \((S. coronata)\).

Prairie Warbler \((Setophaga discolor)\) (2, 1). The description of one at College Place, Walla Walla Co., 25 Sep 2013 (PRAW-2013-1, vote: 0-7-0) failed to exclude the Magnolia Warbler \((S. magnolia)\).

Scarlet Tanager \((Piranga olivacea)\) (0, 0). The description of three birds from Lakewood, Pierce Co., 3 Mar 2015 (SCTA-2015-1, vote: 0-7-0) was a better match for the Red Crossbill \((Loxia curvirostra)\) than for the Scarlet Tanager.

Indigo Bunting \((Passerina cyanea)\) (38, 5). One reported from the campus of Washington State University, Pullman, Whitman Co., 25 Sep 2015 (INBU-2015-3, vote: 2-4-1) was seen too briefly for other blue buntings to be ruled out. Another report from Toppenish, Yakima Co., 24–28 Mar 2016 (2016-2, vote: 4-3-0) did not adequately rule out hybridization with the Lazuli Bunting \((P. amoena)\).

Reports Not Accepted by the Committee—Identification Certain, Origin Unknown

Black-bellied Whistling-Duck \((Dendrocygna autumnalis)\) (0, 0). One photographed in Vancouver, Clark Co., late Apr–the end of May 1989 (BBWD-1989-1, identification vote: 7-0-0, origin vote: 0-7-0). Although this species has expanded its range in more recent years (Sauer et al. 2017), this sighting preceded the expansion and the committee believed an origin in captivity was more likely.

Ruddy Shelduck \((Tadorna ferruginea)\) (0, 0). Three were shot by a hunter at Monroe Landing, Whidbey I., Island Co., 14 Oct 2013 (RUSH-2013-1, identification vote: 7-0-0, origin vote: 0-6-1). Although there is some possibility of wild birds reaching Washington, especially as the Russian population grows (Howell et al. 2014), the committee concluded the most plausible origin of these birds was from a captive breeder.

Long-tailed Mockingbird \((Mimus longicaudatus)\) (0, 0). One, initially mistaken for the more regular Northern Mockingbird \((M. polyglottos)\), appeared at Magnuson Park, Seattle, King Co., 26 Jun–1 Jul 2014 (LTMO-2014-1, identification vote: 0-7-0).
6-0-1, origin vote: 0-7-0). Although the identity of the bird was not in question, it is implausible that this South American species with no prior record of vagrancy reached Washington under its own power.

European Goldfinch (*Carduelis carduelis*) (0, 0). Three sightings of single individuals in King County in May 2016 led to suspicion of a jail-break from a store: Myrtle Edwards Park, Seattle, 3–4 May 2016 (EUGO-2016-1, identification vote: 7-0-0, origin vote: 0-7-0); Discovery Park, Seattle, 7 May 2016 (2016-2, identification vote: 7-0-0, origin vote: 0-7-0); and Covington, 16 May 2016 (2016-3, identification vote: 7-0-0, origin vote: 0-7-0). No pattern exists to suggest that the European Goldfinch might be arriving in North America naturally.

ACKNOWLEDGMENTS

For advice and comments we thank WBRC committee members Shawneen Finnegan, Steve Mlodinow, Ryan Shaw, Dave Slager, Bill Tweit, and Brad Waggoner, as well as outside reviewers Thomas Benson, Alan Contreras, and Kimball Garrett. The Coastal Observation and Seabird Survey Team (COASST) is a citizen-science project whose volunteers search for, record, and photograph dead birds on ocean beaches. We thank the COASST program for providing details and documentation on rare birds that have washed up in Washington. In addition, our thanks to the following observers for contributing their records of birds for our consideration:

Ryan Abe (RAb), Jane Abel (JAb), Keith Abel (KAb), Josh Adams (JAd), Ann Akerill (AnA), Adrienne Akmajian (AdA), Tim Almond (TA), Chris Anderson (CA), Jon Anderson (JAn), David Antieau (DA), Russ Ashley (RA), Leeds Atkinson (LA), Kyleen Austin (KAu), RJ Baltierra (RJB), Michael Barry (MB), Matt Bartels (MB), Philip Bartley (PB), Brian Bell (BrB), Wayne Bell (WBe), Blair Bernson (BBn), John Birchmeier (JBi), Emily Bishton (EB), Randy Bjorkland (RBj), Eric Bjorkman (EBj), Kevin Black (KB), Gary Blitsch (GB), Lucas Bobay (LuB), Bob Boelkelheide (BB), Greg Bohn (GBo), Brad Bond (BaB), Cara Borre (CB), Linda Bossart (Lib), Wayne Bosshart (WBo), Lauren S. Bottomly (LaB), Jeff Bouton (JBo), Ed Boyd (EBo), Tim Boyer (TBo), Bill Bradford (BBd), Keith Brady (KB), Meta Bray (MB), Mary Breeze (MB), Tim Brennan (TBr), Robert Brezak (RBr), Jerry Broadus (JBS), Debie Brown (DB), Ken Brown (KBn), Jeff Bryant (JBi), Victor Burgett (VB), Wilson Cady (WC), Lee Cain (LC), Philip Calise (PC), Jill Cameron (JCa), Gina Cardoza (GC), Keith Carlson (KC), Scott Carpenter (SC), Michael Charest (MCh), Chris Clark (CC), Mike Clarke (MC), James Cleaver (JCl), Bonnie Comegyes (BCo), John Comstock (JCh), Joanne Cormier (JCr), Sharon Cormier-Aagaard (SAC), Tom Crabtree (TC), Kathy Criddle (KC), Melissa Cummins (MCu), Brad Cunningham (BCu), Jeanne Dammarell (JD), Jim Danzenbaker (JD), John Davis (JD), Hans deGryys (HdG), Kristi deGryys (KdG), MerryLynn Denny (MDL), Mike Denny (MD), Michael Donahue (MD), Scott Downes (ScD), Sierra Downes (SiD), Charles Easterberg (CEa), Cameron Eckert (CEc), K. Dean Edwards (KDE), Steve Ellis (SE), Andrew Emlen (AE), Deborah Essman (DE), Ben Feltner (BFe), Paul Fenwick (PF), Jason Fidorra (JF), Shawneen Finnegan (SF), Chuck Flaherty (ChF), William Fletcher (WF), Jasmine Fletcher Glaze (JFG), Cathy Flick (CfJ), Robert Flores (RFl), Michael Force (MF), Ron Force (RfO), Gary Fredricks (GF), Ron Freisz (RFr), Tony Fuchs (TF), Tim Gallagher (TGa), John Gatchet (JGa), George Gerds (GG), Steve Giles (SG), Joshua Glant (JGl), Victor Glick (VG), David Gluckman (DGl), Ruth Godding (RG), Ethan Goodman (EG), Jenny Graevell (JG), Denny Granstrand (DGr), Terry Gray (TG), Tony Grearer (ToG), John Green (JGn), Margaret Green (MG), Jordan Gunn (JGu), Janet Hardin (JHa), Lauren Harter (LH), Todd Hass (TH), Ron Hausinger (RHa), Zach Hawn (ZH), Stephen Hayes (SHa), Eric Heisey (EHe), Ken Hemberry (KH), Dale Herter (DH), Chazz Hesselein (CH), Randy Hill (RHi), Michael Hobbs (MHi), Jennie Hodge (JHe), Marvin Hoekstra (MaH), Jon Holdaway (JHy), Scott Horton (SHo), Jon Houghon (JHo), Evan Houston (EvH),
ELEVENTH REPORT OF THE WASHINGTON BIRD RECORDS COMMITTEE

Erik Hovmiller (ErH), Orin Humphries (OH), Gene Hunn (GH), Suzy Hunter (SHu), Jon Isacoff (JI), Dian Jellicoe (DJ), Chuck Jensen (CJ), Gretchen Johanson (GJ), James J. Johnson (JJ), Philip Johnson (PJ), Whittier Johnson (WJ), Kristin Johnson-Waggoner (KJW), Stuart Johnston (SJ), Nathan Keen (NK), Sue Keilman (SK), Phil Kelley (PK), Clifford Kellogg (CK), Kyle Kennedy (KK), Wendy Klau (WK), Erik Knight (EK), Russ Koppendrayer (RK), Jen Kunitsugu (JK), Bruce LaBar (BLB), Donna LaCasse (DLC), Dow Lambert (DoL), Fanter Lane (FL), Ken Lane (KL), David Larson (DLa), Glenn Laubaugh (GL), Louise LaVoie (LLV), Paul Lehman (PL), Nick Lethaby (NL), Christopher Lindsey (CLi), Brian Linn (BLi), Terry Little (TL), Carrie Lowe (CLo), David Lowe (DLo), Vince Lucas (VL), Mikey Lutmerding (ML), Lawrence Majercin (LMa), Geoff Malosh (GMa), Tom Mansfield (TM), Arnie Martin (AMa), Doug Martin (DMa), R. Michael Massanari (RMM), Mary Frances Mathis (FMF), Connie McCauley (CoM), Andrew McCormick (AMc), Casey McHugh (CaM), Patrick McKann (PMK), Guy McWethy (GMW), Joe Meche (JMe), Nick Mejia (NM), Ryan Merrill (RM), G. Scott Mills (GSM), Jeff Mills (JMi), Lora Minty (LMi), Steve Modinow (SM), Dianna Moore (DMo), Matthew Moskwik (MM), Jennifer Moloney (JMo), Heather Murphy (HM), George Neavoll (GNe), Harry Nehls (HN), Laurie Ness (LN), Grace Niemyer (GNI), John O’Brien (JOB), Mark Oberle (MO), John Ogren (JOg), Lynn Ogren (LO), Grace Oliver (GO), Ollie Oliver (OO), Hal Opperman (HO), Jim Owens (JOW), George Pagos (GP), Bruce Paige (BP), Robert Paine (RP), David Parent (DPa), Bill Parker (BP), Josh Parks (JPa), Brian Pendleton (BPe), Ted Peterson (TP), Matt Pike (MP), Lily Ann Plumb (LAP), Dan Pope (DPo), Frances Pope (FP), Anders Price (AP), John Puschock (JPu), Maria Ramberg (MR), Scott Ramos (SRa), Nick Ratcliff (NR), Carol Ray (CRa), Ginger Rebstock (GR), Harold Reeve (HR), Dan Reiff (DR), Mike Resch (MR), Alan Richards (AR), Carol Riddell (CRI), Jordan Roderick (JRo), Brian Root (BR), Judith Rowe Taylor (JRT), Chris Runik (CRu), Skip Russell (SRu), Noah Sanday (NS), Katie Sauter Messick (KSM), Vickie Scales (VS), Ryan Schain (RSc), Stefan Schlick (SS), Owen Schmidt (OS), Libby Schreiner (LiS), Matt Schroeder (MSr), Marnie Schumacher (MSC), Ervin (Joe) Schumacker (EJS), Doug Schurman (DS), Larry Schwitter (LaS), Jonathan Scordino (JSc), Adam Sedgley (ASE), Bud Sharp (BSp), Cliff Sharp (CSp), Dave Sharp (DSP), Ryan Shaw (RSh), Bill Shelmerdine (BSh), Gary Shugart (GS), Amy Shumann (ASH), Matt Shurllift (MSh), Jeff Skriletz (JSk), Dave Slager (DSL), Kathy Sletetabak (KSI), Richard Smethurst (RSM), Lannie Smith (LSm), P. William Smith (PWS), Alexander Sowers (ASo), Joanne Spitler (JSp), Janet Stenzel (JSt), Andy Stepniewski (AST), Ellen Stepniwski (EST), Brian Sullivan (BSu), Patrick Sullivan (Psu), Ruth Sullivan (Rs), Robert Sundstrom (Rs), Ed Swan (ESw), Joe Sweeney (JSw), Dan Sweaters (DSw), Mark Tamboulian (MTn), Keith Taylor (KTA), Martha Taylor (MTH), Gregg Thompson (GTH), Shep Thorp (ST), Asta Tobiasson (AT), Greg Toffic (GTo), Kenneth Tokach (KTo), Jean Trent (JT), Bill Tweet (BT), Denny Van Horn (DVH), Jan Van Os (JVO), David Vander Pluym (DVP), Paula Vanderheul (PV), Dmitri Vargas (DVA), Jason Vassallo (JVA), Heather Voboril (HV), Brad Waggoner (BWA), Dan Waggoner (DWA), Matt Waggoner (MW), Terry Wahl (TWa), James Walker (JWa), Everett Wardlaw (EW), Chris Warlow (CWA), Barbara Webster (BWe), Amanda Wedow (AWe), Phil Weggner (PWe), Chuck Welsh (CWE), Suzy Whittey (SW), Jan Wiggers (JWg), Keith Wiggers (KW), Jack Williamson (JW), Michael Willison (MWN), Peter Wimberger (PWi), Jack Withrow (JWt), David Wong (DWO), Ann Marie Wood (AMW), Paul Woodcock (PWo), Tim Wootton (TWO), Charlie Wright (CWr), Matt Yawney (MY), Diane Yorgason-Quinn (DYQ), Jon Ziska (JZ), Karen Zook (KZ).
ELEVENTH REPORT OF THE WASHINGTON BIRD RECORDS COMMITTEE

LITERATURE CITED

Pyle, P. and DeSante, D. F. 2018. Four-letter (English name) and six-letter (scientific name) alpha codes for 2143 bird species (and 104 non-species taxa) in accordance with the 59th AOU supplement (2018), sorted taxonomically; www.birdpop.org/docs/misc/Alpha_codes_tax.pdf (22 Jun 2019).

Lazuli Bunting, Benton County on 29 May 2014.
(Photo by © Larry Umthun.)